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CHAPTER 1
THE MOTIVATION FOR ANALOG COMPUTERS

Analog Computation, based on the modern electronic
analog computer, is of fairly recent date. The first
commercially available general purpose electronic
analog computers appearedon the marketin the 1940's.
These early machines were an outgrowth of an emerging
electronics technology and a critical need for automatic
computing machines that could solve complex dynamic
problems. Slide Rule and manual equation solving could
no longer be relied upon as a practical approach to
seeking engineering solutions. Therefore, analog com-
puters became important tools in the design of air-
craft, jet engines, atomic reactors, oil refineries,
chemical plants, etc.

Many types of analog computers have evolvedover the
years. The family hasincluded the mechanical differ-
ential analyzer, electromechanical differential ana-
lyzer, and most recently, the iterative differential
analyzer.

The analog computer has always had several advantages
compared to a digital computer. These are primarily
speed, more simulation capability per dollar, an ability
to integrate, and an excellent man-machine interface.

The mainfeature of the analog computer is that it can
integrate time-varying voltages. There is no easy
way to differentiate. Consequently a mathematical
model of aphysical system which is expressed in terms
of differential equations cannot be solved with the
machine directly. It is necessary to reformulate the
mathematical model in terms of integral equations,
either implicitly or explicitly.

The analog computer can integrate only with respect
to time. Thus, a mathematical model which contains
partial integrals (corresponding to partial derivatives)
with respectto several variables must be approximated
by a set of ordinary integral equations with respect to
time. Of course, computer time need not correspond
to time inthe physical world, although it usually does.

Before 1959 the analog computer was a synchronous
machine; all its integrators operated in unison. In
1959 the DYSTAC! was introduced. The name was an
acronym for 'dynamic storage analog computer'. This
machine was the forerunner of the iterative differential

1
DYSTAC is a registered trademark of CSI.

Two large SD 80 computers are used in this engineering Llaboratory to simulate the behavior of
drone helicopters with different load configurations and various automatic flight control sys-

tems under a wide range of operating conditions.

Simulation saved time and money, reduced the

exposure of personnel and materiel to possible damage when actual flight tests were made, and
it also eliminated the necessity of waiting for special envirommental (weather) conditions.

(Photo courtesy, Gyrodyne Company of America, Inc.)
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Analog computers have long served in the
fields of chemistry and process control as
a convenient, low cost means to observe,
analyze, control, and predict the effect

of varying parameters in a dynamic problem.
Some of the problems may pertain to enzyme
reaction, chemical kinetics, continuous
distillation, heat transfer or transport
delay -- just to mention a few basic appli-
cations of analog computers. The university
student shown here is performing a research
problem involving the effect of potential
barriers on kinetic energy levels.

(Photo courtesy, University of California)

analyzer whichappeared in1960. The iterative differ-
ential analyzer is an asynchronous computer; the
integrators need not be controlled in unison. They
can operate independently either in groups or singly.

In 1962 the analog computer was augmented with digital
logic. This innovation first appeared in a machine
called the HYDAC! The HYDAC had a very large
quantity of synchronous digital logic. Since that time
the inclusion of a smaller complementof asynchronous
digital logic has become accepted practice.

Digital logic can be used for the implementation of
logical decisions. Theseare based onresults obtained
from the analog portion of the computer during the
solution of the problem. Digital logic also can be used
for mode control of the analog computer. All of the
Systron-Donner 10/20 and 40/80 series analog com-
puters can be operated in the iterative mode and can
be augmented with digital logic.

Analog computers have found widespread acceptance
in virtually every area of scientific investigation. This
growing interest in analog computers has created a
need for complete software, specially designed for the
beginner and less experienced user. Also, the recent
addition of digital logic control has greatly improved
the problem-solving capability of analog computers.
How this new feature can be used inanalog computation
is thoroughly illustrated in this publication.

It is the purpose of this handbook to provide students
as well as experienced computer users with compre-
hensive and up - to-date analog computer software.
Chapters 2 to 5 develop the basic fundamentals of com-
puter operation and illustrate the solution of elementary
problems. Chapter 6 provides a detailed description
of the operating controls and computer logic of the
SD 10/20 and 40/80 series computers. This informa-
tion serves as useful reference material to problem-
solutions illustrated inthe more advanced discussions

1
HYDAC is a registered trademark of EAI.
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An SD 80 computer mounted inside a Boeing
experimental jet transport, selected for
the NASA sponsored Supersonic Transport
(SST) Program. In this actual in-flight
application, the SD 80 is inserted between
the pilot's controls and the aerodynamic
control surfaces of the jet plane. This
permits the total control system to assume
the dynamics of any of a wide variety of
SST types.

(Photo courtesy, the Boeing Company)

A student in mechanical engineering is shown
how to simulate a mass-spring-damper system

on an SD 3300 analog computer. Stating
equations is umnnecessary. Using block
programming techniques, illustrated in
Chapter 4, the student need only understand
the basic relationship of physical variables
and constants. Following the program block
schematic for a given system, the student can
easily program the problem on the computer,
observe results on the oscilloscope, and make
further parameter adjustments to seek an
optimum solution.

which relate iterative programming techniques to the
Systron-Donner computers. Chapters 7 to 22 develop
more sophisticated programming techniques and appli-
cations on a progressive basis.



On the Apollo Program, Douglas Aircraft
coupled an SD 40 computer to a large centri-
fuge. The computer calculated and integrated
errors in human performance during Apollo
lifting body reentry simulation studies. The
Systron-Donner computer is seen next to the
programmer, in upper left portion of picture.

(Photo courtesy, Douglas Aircraft Co.)

Analog computers are now standard computing equipment for classroom teaching and research work
in colleges and universities. Students in the departments of Electrical Engineering, Mechan-
ical Engineering, Chemistry and Biosciences receive instruction in the use of desk top analog
computers as basic electronic model builders of dynamic problems. The ease and swiftness of
presenting a solution on a readout (oscilloscope, XY recorder), and the ability to vary problem
parameters and observe immediately their corresponding effects, have made the analog computer

an important teaching aid.

(Photo courtesy, University of Santa Clara)

1-3/4







CHAPTER 2
BASIC ANALOG COMPUTING ELEMENTS

This chapter shows how electronic equipment and
circuits are used to implement mathematical rela-
tionships in an analog computer.

OHM'S LAW

Ohm's law describes the relationship between the
current through, and the voltage across a passive
impedance. A passive impedance is a collectionof
passive elements such as resistors and capacitors
connected together in an arbitrary way. Such an impe-
dance is generally considered (in analog computing)
to be a two-terminal network which can be denotedby

where Z is the dynamic impedance of the element.
Ohm's law states

E = ZI

for

where I is the time-varying current (in the direction
indicated) through the passive element generated by
the impressed time-varying voltage, E (with the
polarity indicated).

In order to simplify what follows, transform notation
will be used where

s f(t) = —g—t £(t)

and
1. _
Sf = ff(t)dt.

For a resistor Z = R and Ohm's law is

E =RI

R 1
—_—
+ E -
For a capacitor
dE
(o} at - 1
so that Ohm's law is
1
E = Cs I
or E = Z1
where Z = L
~ Cs
I
—— ) c
1
+ E -

SERIES and PARALLEL IMPEDANCE

Impedances are additive in series:

b
. ZT=Z]+22

This canbe proved in a simple way. The total voltage
from point a to point b is Ex = Ej + Eg and by
Ohm's law

I=2.1

E. =21+ Z 2) T

T 1 2I=(Zl+Z

When impedances are connected in parallel the total
impedance can be found as the reciprocal of the sum
of the reciprocals:
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Iy
—
Z,
i
Iy — 11 1 ]
z S T .
2 1 2, Zp 13
I3
—
Z3

This again can be proved by simple application of
Ohm's law:

Ip =1 + 1) + 13

1 2 3
ORI SRS SR S ¢
Zp B Z; 2, 7

The total impedance of two parallel impedances has
the simple formula:

, .1 Pi%

T 1 1 7z, +72
.
29

+Z

[ 3%

DIODE
A diode is a non-linear resistor. Its resistance or

impedance depends on the direction of the current flow-
ing through it. It is denoted by

=

+E-
where
E = ZI
Z = Rl’ E>0
= R2, E<O
and generally
Ry » Ry

2-2

Typically, Rj ranges between 1 ohm and 100 ohms;
and R2 between 100, 000 ohms (100K®) and 1, 000, 000
ohms (1IMQ). Thus the diode is an approximation toa
switch for which

R1=0

R2=e°

OPERATIONAL AMPLIFIER

An operational amplifier is of the type that is called a
d-c amplifier; it amplifies not only time-varying volt-
ages, but also d-c or constant voltages. It is charac-
terized by its excellent stability and extremely high
low-frequency gain (amplification). It is denoted by

where

These voltages are measured with respect toground
(zero reference). The gain, A, is usuallyfrequency
dependent and will decrease with increasing frequency.
As will be seen presently, this becomes a limiting
factor in the use of a computer at high speeds. An
equivalent circuit for the amplifier is

where, generally, R; is greater than 106 ohms and
Ro less than 10-4 ohms (closed-loop) at zero fre-
quency. However, the amplifier is currentlimited.
That is, it will only perform satisfactorily if the out-
put current, I,, is less than some value. The cur-
rent limit for the S-D! amplifier is +25 milliamperes
at +100 volt output. The amplifier is also voltage
limited; it will not function satisfactorily if the output
voltage, eq, is greater, in absolute value, thansome
upper limit. The limit for the S-D solid-state 100 volt
amplifier is 105 volts. Since the output of these amp-
lifiers contains unwanted noise whose magnitude typi-
cally can be 10-2 volts, their effective useful rangeis
about three and one-half decades (5x10‘2 to 102 volts).

)

GENERATION OF TRANSFER FUNCTIONS

In what follows, it will be assumed that the input
impedance of the operational amplifier is infinite, the
output impedance is zero, and the gain is infinite.

1 Abbreviation for Systron-Donner.



These assumptions introduce negligible error atzero
frequency and are a good approximation at mid-fre-
quencies. At high frequency, the assumptions cannot
be made (particularly for gain).

Consider an amplifier with input and feedback (from
output to input) impedances and applied input voltages
as shown.

I|
el— Z| r_ Zf
¢
1 Ir I;
2 —"——D/\
02—— Zz -A eo
ej -
B,
03— 23
From Ohm's law
L. (e -e) . (ey -e)) . (eg -e.)
T Z1 Z2 Z3
eJ -e,
I =
Z
t f
Ip =14 + 4

Now if the input impedance, Ri’ of the amplifieris
assumed to be infinite

€
Ii -5 - 0
1
for finite e]. . Thus
IT = If
and
(e1 -e.) (e2 -ei) (e3 -ej) ) i-eo
z -t Tzt Tz, T Tz W
1 2 3 f

Further, if the gain, A, of the amplifier is assumed
to be infinite, then

e

= 9 =
& = A 0

This is a reasonable assumption at low frequencies
since as noted above e,, at most, will be in the neigh-
borhood of 100 volts in absolute value. Thus, equation
(1) becomes

(]

0 L&
Z

3 o
Z

(=
[\
w

-

N
N
N

[=]
(=
[\

The simplest case is

ej — Z; - eo
Z
_ f
€ T T Z. &%
1
which can be expressed
o _ . if. ______________ (3)
e; Zi

By a suitable choice of impedances many desired trans-
fer functions can be generated. (Henceforth, the units
of megohm and microfarad will be used for resistance
and capacitance respectively. )

SUMMER (ADDER)

Consider the configuration shown below, which is
called a summer.

Ry R¢

¢ —\WWA— —AMWN—
R2

QZ—WV <>—4>— eq
R3

e3—"VWA—

If, in equation (2), the substitutions

1 1
z, = R2
23 = Ry
Zg = By
are made, then
° 1 Ry 3
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A setof typical values (in megohms) for these resistors
in a summer in a computer is

R]_:RZ:Rf = 1.0
R3 = 0.1

so that
e, = "€ "€y —10e3.

In a computer, access is usually provided to the input
(summing) junction so that additional input resistors
or feedback components can be added to the summer
circuit externally. Thus, the summer circuit is

| 10 1.0
e —AN—
| 1.0
ez AA'A" I—4 €o
10 Ol J
AN~

where the gains (multiplying factors) are indicated at
each input, and the summing junction terminal by J.
The program symbol for the summer is

>_

where the input gains are omitted if they are unity. If
it is desired to indicate the junction or summing junc-
tion (high-gain input), the symbol becomes

INTEGRATOR
The high-gain input is labeled only if pertinent. Con-

sider the configuration shown below, which is called
an integrator

€j €o

Substitution in equation (3) of

1
2 =R 2y = Ts
leads to the transfer function
% _ _1
€ RCs
or
R .
€% ~ "RCs & Rre [ &t

If R=1, C=1, then
t

e, = - f e, (t)at

(0]

so that the output voltage, e , of the amplifier will be
the integral with respect to%ime of the time-varying
input voltage, e

If a switch is included as shown

1.0
e, AMA— — e,

and if

1) thereisaninitial charge storedon the capacitor
which results in the voltage, e, (0)

2) the switch closes at t=0,

then
t

e, = €, 0 - f ei(t)dt .
o
It is common practice to call this initial voltage the
'initial condition' for the integrator. The derivation
of this terminology is obvious from mathematics.
Itis necessary to find a practical way to establishthe

initial condition or initial voltage for the integrator.
To accomplish this, the circuit below is used.

~erc

€0




Here
1 _ 1 _RCs +1
VA N
f
_ R
Zf " RCs + 1
z = R

and substituting in equation (3)

e = () (e) = m— e
o RCs +1 IC RCs +1 "IC
or
de
RC—°+e = e
dt 0 Ic’

The solution of this differential equation is

_ -t
e, = Aex (ge) + e

where A is a constant depending on the initial voltage
stored on the capacitor before o vas applied. Then

Lim
t eo = eIC,

For practical cases, it is only necessary that t>10RC,
since e-10<, 0001, whichis compatible with the accu-
racy of the circuit. The result in simple terms is:
to guarantee the establishment of the initial condition
it is necessary towait 10RC seconds after the voltage,
-ercr has been applied to the circuit.

The two previous circuits, combined with appropriate
switches as shown below, constitute a practical inte-
grator

-eqc ANA —A A~

1.0
Ei——W\‘—/ —oeq

The operation is as follows:

With So9 closed and S; open, ep = ejc after
1.0 second (or 0.1 second if C = 0.1, etc.).

With S9 open, eq still equals ejc, since the
current through the capacitor is zero. (This
must be true since both S1 and S2 are open and the
input impedance of the amplifier is assumedtobe
infinite. )

With S1 closed at, say, t=0, then
t
eo(t) = e T fei(t)dt.
o]

Ifatt = T, Sy isagainopened, e, will stop chan-
ging and remain at the last value before S1
opened, namely

T
e (T = e - / e, (Bdt.

o

If S9 is closed again while Sl is open, the out-
put of the integrator will return to

Each integrator in a computer has these switches as
part of its circuit. They are open or closed depending
on what the programmer wants the integrator todo.
The state of these switches is called theintegrator
mode. If all the integrators are controlled in unison,
the switch states are determined by the main computer
mode.

The modes have simple names with obvious interpre-
tations. During the R, or reset (IC) mode, initial
voltages are impressed on the integrator capacitors.
During the compute or C mode, the integratorsinte-
grate input voltages. During the hold or H mode, the
integrator outputs remain constant at the lastvalue
achieved before entering the hold mode. Thus, the
mode permits the programmer to stop the computation
atany time, enabling him to evaluate what has happened
thus far in the calculation. The table below shows the
states of S3 andSg in the various modes. The numeral 1
indicates the switch is closed (logical 1) while 0
indicates the switch is open (logical 0).

MODE S 1 S2

R(IC) 0 1
H 0 0
C 1 0

Finally, the general integrator circuit is shownbelow
together with a definition of its transferfunctionfor
various modes.

1J
IC 005 0.05
“€c
S
I 10 2
€
I 10 —o g
e
2
0 ol Si 0
33 o—i_ b—Oeo
SJ oy
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MODE TRANSFER FUNCTION
R e, = €rc
C eo(t) = €rc
t
- f’:el(t) + ez(t) + 10e3(t)] dt
o
H eO(T) = ec
T
- fl_;l(t) + e2(t) + 10e3(t)] dt
o

Note that the gain (multiplying factor) of the computing
inputs is noted next to the terminals and is determined
by the value of the input resistor. The SJ terminal is
provided to allow the other external input resistors to
be added. The IJ terminal provides the ability to gen-
erate an initial condition which is the sum of several
voltages. The J terminal permits the connectionof
additional feedback elements around the amplifier (to
be discussed in chapter 10). Also, these terminals
provide an external connection for the use of solid-
state switches in place of the mechanical switches
(relays) S; and Sy. In this case S; and Sy are con-
strained to be open regardless of integrator mode and
the necessary switching is done by the external solid-
state switches.

The program symbol for the integrator is

The input gains are usually omitted if they are
unity.

POTENTIOMETERS

It is necessary to have a device for entering constant
parameters in the computer program. This is accomp-
lished with a potentiometer. The circuit for this ele-
ment is shown below.

€o

If the output voltage, e, of the potentiometer (pot) is
applied to an input of another element of the computer,
then the input impedance, Ry, of the other element is
connected from the pot output to ground.

2-6

Then
I2 = I1 + IL
so that
i"% _ % %
Ry R, Rp
and
-e._i.'_ = e _.1_ + ._1__ + 1—
R2 o) R1 RL R2
Since
R1 + R2 = Rt
where Rt = total potentiometer resistance,
Ry =R - Ry
and
e = 1 e
S B
RL RL RL
. - RlR
= _ 2
0 Rt (RL + Rl) Rl
e =ae
o i

Now, obviously, it would be time-consuming to deter-
mine Ry, with the knowledge of Ry, Ry, for eachnew o.
Consequently, in practice, the pot is set with the load
connected, by reading the output voltage, e , with a
meter, for aknown input voltage, which is us?lally 100
volts.

Thus the meter reading is equal to 100 cand the pot is
changed until the desired value for « is obtained. The
symbol for the potentiometer is

O —O—



where His the notation for the high end, or input. The
Hisusually omitted since it is obvious from the com-
puter program which side is the input to the pot. The
element discussed above is called a two-terminal pot
since it has two available terminals (or connections)
on the computer program board (patchboard). Some-
times it is desirable to connect the bottom (low) end
of the pot to some computing-element instead of ground.
In this case the low end is made available at the patch-
board. The circuit is

and the program symbol is

)

or

H ) H
A

where notation for the arm, A, is omitted when it is
obvious from the computer program.

ARBITRARY FUNCTION GENERATOR

Many mathematical problems to be solved with a com-
puter require the generation of an arbitrary function.
This is accomplished with a device called an arbitrary
function generator (or frequently, diode function gen-
erator, since the internal circuitry uses diodes). This
device allows the programmer to approximate the de-
sired function with straightline segments. Anexample
is shown below

f,(e| )

7~ fley)

Here the function f(e,)is approximated by f’(el) with
three line segments. "In general, each function gen-
erator, dependingon howitisused, will provide either
10 or 11 line-segments with maximum slope changes
of2or2. 5:1. Several of these devices can be used to-
gether if more segments are required. The location
of the slope discontinuity is called the-breakpoint and
is adjustable. Detailed instructions for the setup of
this element appear in Chapter 6.

The principle of operation of the function generator
depends on the use of a non-linear input impedance
for anoperational amplifier. That is, the impedance
generates an input current proportional to the function
which in turn constrains the output voltage to have this
functional relationship to the input voltage. A simpli-
fied circuit is shown below.

1.0
R AN (i
(v

e Z, €
-Il = IF
I1 = - f (el)
€, = f'(el)

The program symbol for an arbitrary function gener-
ator is

FIXED FUNCTION GENERATOR

Fixed function generators areused to generate often-
used functions such as sine, cosine, log. etc. These
are similar to arbitrary function generators in opera-
tion, but do not permit the programmer to change the
parameters within the device. Generally, a fixed
function generator is more accurate and has better
frequency and noise specifications than an arbitrary
function generator. The program symbol for a sine
generator, for example, is

Sin Sinx(t)

x(t)

MULTIPLIER
Thé'multiplier used with the S-D computer is calleda

quarter-square multiplier. The name derivesfrom the
equation

XY = ¢ [(x + V2- (X-Y)z]

The actual equation to be implemented with hardware
in order to provide multiplication is

€16 ~ Z«l)‘dnel * °2|2 - l € - ezlz] @

The multiplier module contains two fixed function gen-
erators. Ablock diagram for one of the generators is
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T

]
.&

|:zo-n omx—m |

- ep ¢—

(Note that bothpolarities are required as inputs for both
e and €y. ) The transfer function is

ley + ez|2
I=K—750

where K is a constant that determines the feedback
resistor of the output amplifier (to be shown below).

The block diagram for the other is

;

INZOTI omx-—-n]

- ep &—

|

...el.____

) aa—

The transfer function is

The multiplier module block diagram is

Izo-n Omx—-

e &
- R
- o
I l
- e
-e2' L O

[Zzomn omx—m
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The transfer function is
_ K 2 2] . €15
1—4—00[|e1+e2| -|e1-e2|]—K100

A simplified block diagram for the module is

)
e M R

U
‘e|._L
T

—

e,o——m| 1
0
-e,0——D
2 L |

If the module is connected to an output amplifier

e A
u
T e
o
e, &—M
0
-e,0—1 2

“€1 €3
e ———
0 100

The program symbol for the multiplier module (with-
out the output amplifier) is

€

-e

With the designations

M: The module is used as a multiplier
I: The output is a current
X,Y: Bipolar inputs



If the bipolar inputs are not naturally available from the Note that the ""minus sign'' associated withthe ""M" indi-

program (e.g. other variables) then summers can be cates a negative current is generated for a positive
used to generatethem. This can be done in two ways: product.
Case I: The program symbol for the multiplier module together
with an output amplifier is
e M
o | X I f—a o >< %o
=l
ex
! Y ey e
l = x>y
ens = —2
= 7-5x 6y °" 100
100
-ez
ey —8—
As before, summers can be used to generate the bi-
CIRCUIT . . . .
polar inputs if they are not otherwise available.
Case I:
M
(+) A
Y ( = ) /\
X I €o €o
e -l g 7
x Y
ey e | ex €y
e = —
° 100
ez
PROGRAM SYMBOL ey /
CIRCUIT
Note that the ""plus sign'' associated with the ""M" indic-
ates apositive current is generated for a positive pro-
duct, exey. The sign is generally omitted since this
is the normal condition.
Case II:
[]] M
X 1 ——a
ex_"b'i >_I_‘e Y
€2
€y = ~e2 PROGRAM SYMBOL
1 — €y ey
~ 100 (Note that here the sign inversion is due to the output
amplifier. )
CIRCUIT
Case II:
M A A
e X 1 = (+)
ot | X 1= \/> e
Y ex—¢ el Y

e Nee | -ep
y ’ L e =-2 2y

° 100

PROGRAM SYMBOL CIRCUIT
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PROGRAM SYMBOL

A multiplier module canbe used to make a divider with
the same output amplifier. (This connection can be
made conveniently at the patchboard. )

-ey
I
Y
ex O— MV I X
I -
M [
Here
eoe ey
1=K = &
so that for R = 1
K
®x 100
or
100e
X
e = -
0 e
y
The programmer's symbol is
ex | -+ €o

I 100 ey
ey T ey

From the circuit it can be seen that the condition ey>0
must hold in order to avoid instability. This is easy
to show. The multiplier module can be considered to
be a non-linear feedback resister, R.. The sign of
Rg is the same as the polarity of e v Suppose in the
circuit

2-10

Iff €] b | .,

R¢<0. Then, If will be in the direction shown, for
eo > 0, and Iy will produce anej < 0. Since the gain
of the amplifier is negative and large, the circuit will
be unstable. An additional restriction, |ex| <|ey|, is
necessary to ensure that the output amplifier not ex-
ceed the voltage limit.

The divider can be used to generate square root in a

simple way. If ey = ey

ex —AA—4¢ e
CIRCUIT
then
e
e, = -10061
0
or
e - J100e
o] X
so that

= 10 f~e e_<o.
eo x * %<

The diode insures that the system will not saturate in
the wrong direction if e, goes positive inadvertently.

This circuit has the program symbol

v e, 10fex

ex




FUNCTION SWITCH

A function switch is a manual switch which can be oper-
ated from the controlconsole. Itisused to change the
computer program during execution. The switch has
three positions: up, down, and center (off). Its circuit
is shown below.

i v
t

This is the program symbol as well. The terminals
of the switch are located at the patchboard.

FUNCTION RELAY

Afunction relay is used to make program changes auto-
matically during execution. It is energized (logicall)
for an input equal to or greater than +28 volts and is
de-energized (logical 0) for an input equal to or less
than 0 volts. The circuit is shown below

Uy
n "~
X-———of'g——Ux
u Ug=X if U=0
=X ’f =
FRIN x=X if U=

This is also the program symbol where N is the relay
number,

ELECTRONIC SWITCH

An electronic switch is used in much the same way as
afunction relay;the only restriction being that it must
be in series with the junction of an amplifier. Its speed
of operation is much greater (10-9 sec) than a function
relay (10-3 sec). It requires the same input voltages
(logic levels) as the function relay (i.e. logical 1:
ZBsemSIOO, logical 0: -1.005ein50).

The program symbol is

a Ua

Ug=a if U=l

whereN is the switch number.

COMPARATOR

Frequently, itis requiredtodetermine the sign of the
sum of two variables.

A circuit which accomplishes this is

b2 €3 068
ol I¢ ‘ oz ~'00
e ) o——AAA——— S
q °J L—oeo
o.l
€ O VWN—

ﬂ

D

If (e1 + ep) >0, then ey is limited to approximately
0 volts by Dp because of its low resistance when it con-
ducts (logical 1). I (e1 + eg) < 0, then eg is limited
to approximately +28 volts by D, (logical 0). The
latter is true since

1) Ip mustbein thedirection shown (e1 + e2>0)

and ez > eJ.

2) eg = 28 volts since ez must be approximately
0 volts due to the high gain of the amplifier.

The program symbol for the comparator is

u
b }

u=! if (a+b)<O
U=0 if (a+b)>0

If both logical comparator outputs are required, then
e, is complemented with abiased analog inverter. The
program symbol is

. U
b N —
U
U

and the analog circuit is

B,

(et

.30

-100
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CHAPTER 3
ELEMENTARY ANALOG PROGRAMMING

All dependent variables in an analog computer are vol-
tages. Consequently, it is necessaryto equate these
voltages to physical variables. Since the elements of
the computer are voltage limited, scaling will be re-
quired. The art of scaling is discussed in Chapter 5.
In this chapter scaling is ignored since the necessary
concepts canbe developed without reference to scaling.

As pointed out in Chapter 1, it is necessary to remem-
ber that an analog computer cannot differentiate easily.
It is a machine whose main feature is its ability to
integrate. Consequently, problems which are defined
by differential equations must be reformulated in terms
of integral equations either explicitly or implicitly.
Consider the problem

y = y(®)
dy _
=t By =0

y(0) = A.

This can be rewritten as the integral equation

For this problem computer time will represent x, and

y(t) + nydt =0,t=x
y(0 = A
An integrator, as shown in Chapter 2, integrates from
t = 0 onward. It also requires an initial condition:

namely the value of the integral at t = 0, which in
this case is A. Thus, the problem is formulated for

the computer as
t
- f By(t)dt, 1)
o

y(0) = A

y(t)

The right half of equation (1) can be generated by

A/100
- 100

t
+yt——C -[ By (hdt
(o]

where the constant B and the initial condition A are
inserted by means of pots. Remember that the inte-
grator inherently has a sign change. Equation (1) states
that y(t) is equal to the negative integral. All that is
needed, to complete the computer program for this
problem, is to connect the output of the integrator to
the input of the pot set to B. Hence, the computer
program is

A/100
-100

y (1), t=x

The independent variable, y, can be recorded from the
output of the integrator.

In this example the differential equation was reformu-
lated explicitly in terms of an integral equation. It is
frequently possible to do this in an implicit way, as
the next example will show.

Consider the problem

¥y + Ay + By = f(t), vy = vy (t) (2)
y(0) = C
y(0) = D

This is equivalent to
y = it) - Ay - By
y(0)
y(0)

First, y can be generated from § by

C
D
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(Note that again the pots are used to generate initial where equation (2) is satisfied by applying the correct
conditions.) Usingthis circuit, the complete program inputs to integrator 1.
can be generated by

£) Dt

_Ay

0/100

+100

c/100 Next, the use of non-linear elements is demonstrated.
-100 Consider

¥ + Ay + ty = cost, 1 =A <10,
)'7(0) = C,
y(0) = D.

The computer program (except for scaling) is

+100

.0l

cos t

+100 -100
L D
100 700
0 >y
[
U/

sin t \

-cos t

-ty / t Ko]]
< >< -100
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As another example, consider

¥y + i)y = 0
y0) = A
y(0) = B

The computer program is

+l00 =100

A B_

100 100
-y —y

-y (1)

(1)

| .0l

The next example shows how the DCU's (Chapter 8)can
be usedto determine the solution of a differential equa-
tion for a specified value of the independent variable.
Suppose it is required to find y (. 17) for

y+y =20

y(0) = 100.

From above, the analog program which generates y is

-100

In order to determine y(.17) the computer is allowed
to compute for 0.17 seconds and then put into hold.
The latter can be accomplished by applying +28 volts
to the "problem hold' terminal at the patchboard after
0.17 seconds. This will halt the entire computer and
in particular the computation carried out by the above
program. The digital program which will do this is
shown below:

/ /
{RH

| IOMs _!OOMS

IN ouT
Lo 2] ocU | DCU 4
100 MSJ0 |7
IMS
Nl beu 5

The operation is as follows: The clock pulses are not
applied to DCU 1 until the machine is in compute be-
cause the output of the RH' bus is a logical 0 in I C
and this is an input to gate 1. The FF is initially in
the R state when the machine is in compute having been
reset by the FRT' Logic output. Rivider 1reduces the
clock frequency of 1000 cycles/see to 100 cycles/sec.
The output of the 0.countof counter 4 is 10 cycles/sec
and is connected to the input of counter 5. The 7 count
output of counter 4 and the 1 count output of counter 5
are connected to gate 2. Thus, whenever t = 0. 17 sec
the output of gate 2 will change from Oto 1, which will
change the FFtothe Sstate. At this time the computer
will go to the hold mode due to the S output of the FF
being connected to the problem hold terminal at the
patchboard. Also, the clock and counters will be reset
because of the logical i applied to the OV terminal.
As soon as the machine goes to the reset mode the
FRT' logic output will cause the FF to return to the
R state. Thus, the logic circuit is ready to beused

! R
2 2\ T PROBLEM
L/ s HOLD
TERMINAL
ov
/ ’
{FRT

again as the computer is manually put first in the reset
mode and then the compute mode.

ALGEBRAIC EQUATIONS

The first examples were intended to illustrate the basic
approach to programming. The following illustrates
a more serious application of the analog computer.
Suppose it is desired to solve a set of simultaneous
algebraic equations which are expressed in matrixform

by
AX = C (3)

where the n x n matrix A and the column matrix C
are known. For thepurpose of illustration it will be
assumed that A is of rank 2, although the derivation
which follows is perfectly general. Consider

X + AX = C (3a)
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When the system has reached steady-state (assuming
there is one)

X =0
AX = C.

Thus the solution to equation (3) is obtained from the
steady-state solution of equation (3a). The latter can
be written

=cC

X A%t 9% 1
Xy + AyX; + agX, = C, 4
and the analog program is
X X2
ay g)QZI di2 ag2

C C2
100 100

-100 -100

Generally, integrator capacitors are chosen equal to
0.001 pfd to decrease the solution time. However,
there is no guarantee that the system of differential

X

equations, (4), is stable. A different approach will
provide an unconditionally stable system of differential
equations. If

AX = C
it follows that
A'AX = A'C (5)
where A' is the transpose of A. The solution of equa-
tion (5) is the same as that for equation (3). Again at
steady-state the solution of
X + A'AX = A'C 6)
will be the solution of equation (5) and therefore equa-
tion (3). The stability of equation (6) is determined by
X + A'AX = 0. ()

If equation (7) is multiplied by the row matrix X, then
the result is

XX + XA'AX = 0.

It is well known that XA'AX is positive definite (i.e.
non-negative for all values of X). Unless X = 0,

XX <0

and stability is guaranteed. The computer program for
equation (6) is

-100 -100
a
100 100
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In this program it is easy to change individual coeffi-
cients because eachpot is associated with only one co-
efficient. The program can be simplified so that it
requires no more equipment than the previous pro-
gram if the following coefficient changes are made.

a1 211 T 3
212 211212 T 22122
31 311712 ¥ 221722
299 agy. * a122

€y 2,9C; * 29,04

2 a15Cy + 299Cy

This simplified program saves equipment but is in-
convenient to use when the solution is required for
several different values of the coefficients.

ARBITRARY CLOSED FUNCTIONS

Many analytic or closedfunctions can be generated by
representing them in terms of their generating dif-
ferential equations. The following examples illustrate
the technique.

f(t) = 1/t, t>a:

This function has the generating equation

a2
G-t
1
f(a)=—a-.

The program which solves the generating equation is

(100q)™!
-100

— (1)

S0

f(t) = At + a)"ot >0:

df n

at - t+o:,'f
£0) = Ad"

Generating Equation

Aa"
100
-100
10 £(1)
=100
a
100

n/10 Ol
>< -100

Program

f(t) = In(t+a), t>0:

da _ 1
dt  t+ e
f(0) = Inc

Generating Equation

0l

-100 o—¢—(—

| .0l |

Program
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f(t) = A cosh(t), t>0:

=t
£(0) = A

Generating Equation

A
100
-100

A cosh(t)

Program

Mean value:

The mean value, ¢ (t), of a function, f (t), over the
interval [Tl’ T; + t] is defined by

T, +
¢t) = —i— | 1tz 0. ®)
Ty

The generating equation for ¢ can be obtained by dif-
ferentiation:

&= T, +0 - o) )

The program is

-f (1) ——d

.0l

(e -100

t'=T +t R

Suppose the integrators 1, 2are in the initial condition
modeuntil t = Ty, at whichtime their mode is changed
to compute. Then, theoretically, the program will
generate the solution of equation (8). However, the
program will not work because the right side of equa-
tion (9) is indeterminate for t = 0. Thus the divider,
in the program will have an unstable output. Practi-
cal limitations require the Y-input to be at least 3
volts for useful operation. Consequently, it is neces-
sary to choose a different initial condition:

T1+e
00 =5 [ 1,
T

This program is

-f (1)

.0l
S 1 2 -100
S2 o g
_L_OTO'G
As before, whent' = T,, the mode of integrators 1,

2 is changed from initial condition to compute. Initially
S1 is closed and S2 is open. The output of integrator
1 will not be ¢ (t) untilt = ¢. Whent = ¢, the cor-
rect initial condition, namely ¢(¢), will have been es-
tablished for integrator 1. Atthis time the comparator
will be activated, which will open S1 and close S2.
Also the output of integrator 2 will be «. Thus, the
generating equation is implemented by the program
starting when t =¢', The output of integrator 1 will
be ¢ (t), t>e.

COORDINATE TRANSFORMATION

Suppose two coordinate systems have the same origin
and are displaced by an angular rotation, 6:

An X-coordinate point, say x, will have the coordinates

X’ = Xcos ¥
y* = -xsin @

in the X', y'-coordinate system. Similarly, for a

y-coordinate, say y,

X’ = ysin ¢

y’ y cos 6.



Thus, a vector, R, in the X, Y-system with components
X, y, will have the components

il

X’ Xcos 8 + ysin 9

-xsin 8 + ycos ¢

yl
in the X’, Y’-system. In matrix notation
R’ = TR
where R, R’ are the representations of the vector in

the unprimed and primed coordinate systems respec-
tively, and where

T = cos 9 sin ¢
-sin ¢ cos g].

In the three-dimensional coordinate system

positive rotations 6, ¢, \ respectively about the X, Y,
Z axes correspond to the transformations

1 0 0
R = |0 cos 8 siné
0-sin 6 cos 9

[ . T
cos ¢ 0 -sin ¢
R -0 1 o0

¢ | sin ¢ 0 cos ¢

(cosxsin)\ Oﬂ
RA = |-sinA cos A O
0 0 1

4

Any arbitrary three-dimensional rotation canbe repre-
sentedas a product of these three matrices. The super-
scripts refer to the axis about which the coordinate
system is rotated and the subscripts to the name of

z the angle of rotation.
(N7 RS
The transformation of a vector, V, by R*is
V/ = RV
vV: =V
el p 4 X
(gl §
¢ V/ =V _cos § + V_sing
y y z
V. = -V_sind + V_cos 6.
6 z y z
X .
The program is
Vz Vy Vx
%g \>(—)< \H )
V/
é -WC0S6 x
HVySING ;
SIN Vz3IND ~VzC0S Vy
—
CcOS &
v
/
Ve

Note that ¢ is limited by the range of the sine and cosine function generators.
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The program symbol used frequently is

vy X x’ v,
R X
/ /
v, v % v,
9

The transformations Ry, R” have similar programs.

MATRICES

A matrix, A, is a collection of elements:

A<faghily

(in what follows it is assumed that n = m). Thus, if
n =3

41 212 13
A =lay; 2y, 2y,
231 433 233

Multiplication by a constant, «, follows the rule

41 H2 3| | P11 Ryp Ay
@351 dgg g3|T[ gy Ay, GAyg
331 333 A333] [ A3y Agg

oA =

1]

which also can be denoted

aA = ozaij oA = oz[aij] = [aeaij]
when it is understood that the aij are the elements of A.
Addition follows the rule

A+B=aij+bij=(a+b)ij

or for, say, n = 2
11 212) (P11 Praf |B117P11 212+Ppp
221 bag| |P21 Pag| |21*P b

A+B-=

21 22 Pgg|

Multiplication:

AB = Zaaiabaj

Thus for, say, n = 2

211P11 * 219Pp1 293Py * 2Py
AB -
91P11 * Aggbay  Bgybyy + Agobool

3-8

Note that AB # BA. The unit matrix, I, is

I=aij=1’1=]

1]
°o
.
“t~
S o

Thus for, say, n = 3

1 0 o0
I={0 1 0
0 0 1
I, has the property
IA = AT = A
Differentiation:
d, _df(.) _ da
dxA =& W=l
or for, say, n = 2
. . cla,1 da12
g—A _d 11 12 | _ | dx dx
dx =~ dx| a a -
21 22 da21 da.22
dx dx

Transpose: The transpose, A’ of A is

A’ = a,.
ji.

or for, say, n = 2

Submatrices: The submatrix, Sij, corresponding to
the element. aj; in A is obtained by
deleting the i-th row and j-th column
of A. Thus for, say, n=3

Determinant: The determinant, IA', of A is a scalar
quantity and can be found by induction.
By definition

|a] - ng D™Ma s, foranyi. ()
(Note that some particular choice is
made for i).
Forn =1
[a] =2y



Thus, forn = 2,

] -

1+] B
)7 Vagf8y5| = 241511 - 219512

1 Mo
p—

]

- a

311%22 12221

or
2 2+4]
|al- ]El('l) ag3lSo;l = -231521%22252
“891212139921

and either calculation leads to the same result. For
n = 3,

3
|A|= Z (- 1)”3 ij IS

z o

and in particular, any of the equations

3 1+
z (1) aljlsljl

Al =

Al - 4,
3 g

|A] - A 21151

A —§ 134, Is

I l - ].=1( a3]l 3]|

will lead to the same [A|. i = 1

A S.,ta

31151172125127213513

211(ag9233-393339) - 219(a91335-29423,)

+ ay3(a59339-29924)

= a + a

11%22%337211%23%327212%21%33 12%23%31
* 213%91%397313%99%31

Alternatively, |A| can be determined from
n i4i
'A| = Y (-1) ]ai.|S..|, for any j. (11)
i=1 AR Y
A determinant can be multiplied by a constant, «, in
a simple way:
‘aAI = m|A|.

From equations (10) and (11) it can be seen that if a
matrix B can be generated by m adjacent row inter-
changes and p adjacent column interchanges starting
with matrix A, then

Bl = 1™l

Cofactor: The cofactor, C,., correspondingtothe ele-
ment a, 7 in A is 1

= ()it
cij = (~1) lsijt,

or for, say, n = 3

91 293
13 “|a,. a
31 232
and
a a
Cps - - a11 a12
31 332].

. -1 . :
Inverse: The inverse, A ~, of matrix, A, is

-1

Cji
A_ =

[A]
For example, if n = 2

-1 1 22 331
311%227%19%21 |
12 1.

Orthogonality: A matrix, A, is said to be orthogonal
if

A = AL,
Note that RX, RY, RZ are orthogonal
matrices. The geometnc interpreta-

tion of orthogonality is rotation.
Logical Matrix Operations:
(AB)’ = B’A’
@Bl = Bl

DECOMPOSITION OF ORTHOGONAL MATRICES

Frequently the programmer is presented with a com-
posite orthogonal (rotation) matrix which is a function
of several angular variables. Usually these angular
variables represent successive rotations about coordi-
nate axes. The simplest way to generate the computer
program 1s to decompose the matrix into a product of
the RX, RY, RZ matrices and then generate subpro-
grams for each of these matrices. This can be accom-
plished by following a simple set of rules. These are
stated without proof and examples are given. RX RY,
RZ are said to be type 1,2,3 matrices respectwely.
Suppose the composite matrlx, M, can be represented

M = A1A2...A.N .
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The outer matrices are Al’ AN and the inner matrix
MI’ is defined by

MI = A2A3...AN_1.

Now suppose the simplest element (lowest degree homo-
geneity) of Mis located in rowi and columnj. Then A
is of type i and Ay is of type j. The angular variables
corresponding to Ay, Ay will appear in the products
of columns j, irespectively. The sense of the rotation,
Aj, (positive or negative) can be found by setting all
the variables corresponding to Ag..., Ay equal to
zero. The sense of the rotation, Ay, is similarly
found by setting the variables corresponding to A, ...,
AN-1 equal to zero. If the simplest element of M is
zero, then M has the representation

M=A1A2

and there is no inner matrix. If the simplest element
of Mis not zero, then there is an inner matrix and Mj
can be found by setting the variables corresponding to
A1, Ay equal to zero. The further decomposition of
Mj is carried out with the same procedure as for M.

Example:

Cos ¥ Sin ¥ 0
M =|-Cos 6 Sin ¥ Cos 9 Cos ¥ Sin ¢
Sin ¢ Sin ¥ -Sin ¢ Cos ¥ Cos 9

The simplest element is zero and is in row 1 and col-
umn 3. Therefore there is no inner matrix and Ay,
Ay, are of types 1, 3 respectively. The products of
column 3 contain the variable ¢ and the products of
row 1 contain the variable for ¥. Therefore, the var-
iable for Aj is 6 and the variable for Ag is ¥. If ¥ = 0

1 0 0
M =10 Cos 0 -Sin 6
0 ~-Sin 6 Cos 6]
é =0
Cos ¥ Sin¥ 0]
M = |-Sin ¥ Cos ¥ 0
0 0 1_1
Finally,
X _ Z
M = Rg R\I’
Example:

Cos¢ Cos¥ + Sind Sin¢ Sin¥
M = -Cosé Sin ¢
Cos¢ Sin¥ + Sind Sin¢ Cos¥

Sin¢g Cos¥ - Siné Cos¢ Sin¥ ~-Cosé Sin¥
Coséd Cos¢ . Siné
Sin¢ Sin¥ - Siné Cos¢ Cos¥ Coso Cos¥

3-10

The simplest element of Mis Sin ¢ and is in row 2 and
column3. The products of column 3 contain the vari-
able ¥ and those of row 2 the variable ¢ . Therefore
A4, Ag are of types 2, 3 with variables ¥, ¢, respec-
tively.

Ifo = ¢ = 0, then
’—Cos ¥ 0 -Sin ¥
A1 = 0 1 0

| Sin ¥ 0 Cos ¥ |

If¥ = 0 = 0, then

A3 = |-Sin ¢ Cosg¢ O
0 0 IJ
¢ = v 0, then
1 0 0
A2=MI= 0 Cosg Sin 6
0 -Sin 9 Cos ¢
Finally,
Y X, Z
M = B\p Re R¢ .

As can be seen from the previous example, it is not
necessary to find all the elements of A; to determine
the sense of ¥. Since it is known that A} is of type 2
it is only required to evaluate the element in row 1and
column 3 with ¢ = ¢ = 0. Similarly, if the element
in row 1 and column 2 is found for ¥ = ¢ = 0, then
the sense of ¢ is determined.

Example: (Here we use the abbreviations:C_ = Cosaq,
Scy = Sine) @

C CoCgtC 5,5,84+ 8,0,

M = C¢SGC\F-C¢C08)\S\I’-S¢C9C)\

-C¢C)\S\I,+S¢S)\

S¢C BC\II +S¢‘S{)Skb‘l’-C¢‘SGC)t CGS‘P—SOS)\C\P
S¢SBC\I:-S¢CHSAS\I/+C¢C GC)\ SosqﬁCoS)\C\p

-Sq)CxS‘p-Cq)S)‘ CXC\P

The simplest element of M is CXC which is in row 3
and column 3. The products of column 3 contain ¢ and
those of row 3 contain ¢ . Thus, Aj is type 3 and Ay
is also type 3. 6, ¢ are the variables for Aj, Ay
respectively. Consider the element in row 1 and
column 2. For A\ = ¥ = ¢ = 0 its value is Sing and
consequently



Todetermine the inner matrix, set ¢ = ¢ = 0 so that

¥ v
M= -58, Cy 5%
CAS\I/ -Sx CAC\II

The simplest element of Myis a zero in row 1and col-
umn 2. Also for ¥ = 0 the element in row 2 and col-
umn 3 is Sinx. The products of column 2 and row 1
contain the variables \, ¥, respectively. Thus

Finally,

R Z X Y Z
A = BORA quR "
COORDINATE TRANSFORMATIONS WITH UNRE-
STRICTED ANGLES
The coordinate transformation program is the same as
before, except for the use of Sine and Cosine function

generators. For unrestricted range we use the vari-
able 6 and the equations

Sine = féCosg dt

Cosé =-f6Sins dt

XY
My = Ry Ry - The program is,
-100
" "
] v J 100 sin 8 J 100
X 1 X I cos 8
Y Y
§ : ]
M M
+ +
— 1 X —e — ] X —e
Y Y
] |
M
— 1 I X (—e
Y

®
+100

The lower two multipliers and summer generate

E = -(100 - Sin% - CosZa).

This error is used to change the damping of the inte-
grators to ensure orthonormality of Sing, Cosé.
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CHAPTER 4
BLOCK PROGRAMMING FOR PHYSICAL SYSTEMS

A Valuable Aid to Simulation of Lumped-Parameter Physical Systems

The analog computer, or differential analyzer, is a
powerful tool for obtaining dynamic solutions to differ-
ential equations. Generally the equations to be sol-
ved relate to a physical system of particular interest
to the computer programmer, in which case the pro-
grammer wishes to simulate his physical system by
means of an electrical network whose defining equa-
tions are analogous (hence the name analog computer)
to the subject physical system. It is desirable then,
to arrange the computer mechanizationto have a one-
to-one correspondence betweenthe problem board and
the physical system, so that the programmer ''sees"
his system rather than an abstract electrical network.

The following discussion will illustrate a method of
programming in which the physical elements are
treated as blocks rather than as sets of differential
equations. Certain useful basic building blocks will
be developed, and methods for combining the basic
blocks to form any desired physical system (simula-
tion) will be discussed. Simulations generated by the
methods to be described will have the advantage that
any or all physical parameters appear as single con-
trols in the computer so that any parameter may be
changed without affecting any other setting. In addi-
tion, any or all variables appear as computer outputs
and may be individually monitored.

A lumped-parameter system, by definition, consists
of a number of interconnected discrete elements whose
individual or collective responses to impressedforces
or stimuli are of analytical interest. The forces and
responses are related by a mathematical operator.
Block programming starts with the selection of basic
definition and rules.

MATHEMATICAL OPERATOR (O)

The operator, or combination of operators, describes
the functional relationship between quantities. The
most common operators are the following:

Summer

Constant Multiplier (potentiometer, commonly
referred to as ""pot')

Inverter - -1 Sign Changer
1
Integrator - 5 (La Place Transform Notation)
Differentiator - s (This operator is never used in
an analog simulation if it can
be avoided, as itusually can).
Variable Multiplier
Arbitrary Function - f(x)

Analytical .Function - Trigonometric, Log,
Hyperbolic, etc.

Inverse Operator - o)t s, %are inverses

ELEMENT

The element is the basic unit of the block representation
of a system. It hasa pair of terminals or nodes, with
a value associated with eachnode. It alsohasa trans-
ference quantity between nodes, or "'through' the ele-
ment which is functionally related by some operator to
the node-pair value. The transference quantity may
alsobe referredto as the branchtransference or trans-
mission.

The elements required to depict the passive lumped-
parameters of most physical systems are very few in
number. Inparticular, five basic elements will suffice
for many linear electrical, mechanical, and thermal
systems. These arethe Summer, Constant Multiplier,
Sign Changer, Integrator, and Differentiator.

BLOCK

A block is the computer mechanization related to a
physical element. The input/output variables of acom-
puter block are voltages and currents, but the operator
relationship is the same as the simulated element.

Table I gives examples of single elements and their
corresponding blocks. Table IIgives afew commonly
occurring two-element combinations. Combinations
of more than two elements can be generated as shown
in the following examples. Useful tables of more com-
plicatedblocks or trangfer-function simulations appear
in many publications.

DRIVING SOURCE

A driving source is a source of energyor power for a
network of elements.

SYSTEM STABILITY

A stable system is one whose responses are bounded
(finite amplitude limit) for any finite input. An un-
stable system is one whose responses are not bounded.

NETWORK

A network is an interconnected set of elements and
sources. Elements may be joined together at their
nodes, providing the connected nodes have common
dimensions and value, and provided the transference
quantities have common dimensions.

This discussion concerns elements and networks in
which the followingtwo rules apply: (Kirchoff's laws)

1. Thealgebraic sum of the node values around
any closed path (loop) in a network is zero.

2. The algebraic sum of the transmission quan-
tities at any node is zero.

1 Korn and Huskey, ""Computer Handbook'', Chapter 2,
McGraw-Hill, New York, 1962.
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TABLE I. Single-element Computing Blocks
PHYSICAL SCHEMATIC MATHEMATICAL
ELEMENT SYMBOL RELATIONSHIP PROGRAM BLOCK
Summer ¥ X, : y
Y == (Xl + Xz) X2
Constant
Multiplier
(POT) x—©—Y
Y = KX
Inverter N
X Y
=-X l/
Integrator
X x [[> v
S
X S Y
Differentiator <D
Y =sX
X Y
=Y
R (E) - Ep)
Resistor E,—\NW—E; 1= —5
———I
Linear K F-K(X, -X
Spring Xn—’TYF‘-Xz & - %)
Torsional FaOK F=K(o, - 0.) X,
Spring 1 2 =X ‘Y
6, 8, 2
Heat MKM Q =K(T, - T,)
Conductor T d T2 1 2
Viscous vi—p Vo F = B(v1 - vz)
Damper BF
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TABLE I (Continued)

PHYSICAL SCHEMATIC MATHEMATICAL
ELEMENT SYMBOL RELATIONSHIP PROGRAM BLOCK
. C I
Electrical E __.| '._Ez (E, - E,) =—=
Capacitor : — I 1 72" sC
y —K> H> (%~ X,)
F
Viscous x|—-—_TIB—x2 X; - X)) =58
Damper F
\) _____,I:: I.__V
Mechanical ! 2 (vy-vy)= sF_M
Mass _—F
X|__
-X S K Y
2———-
Thermal T — T Q
Mass — 6 (Tl - T2) S—l\TI—T
. L
Electrical E,—YY \—E (E, - E,) X
Inductor ! 2 1= 1L !
—1I sL -X =Y
2
Mechanical v, V. -
Mass M2 X - (vy - v Y K— s (X,-X)
=X s

a) assigning aposition inthe mechanization
diagram to all necessary variables and
operators.

COMPUTER PROGRAM MECHANIZATION
COMMENTS

b) accomplishing the necessary intercon-
nections so that each output has its pro-

1. Operational amplifiers operate with the junc-
per inputs.

tion at virtually zero potential; the currents
into the junction through all the input and
feedback paths must sum to zero; and there c¢) checkingto seethat all input/output rela-
is asign inversionbetween the amplifier in- tionships in the mechanization are satis-
put and output quantities. fied.
2. Anyclosed-loop ina problem mechanization EXAMPLES OF NETWORK PROGRAMMING
simulating a stable physical system will gen-

erally have an odd number of sign inversions. The following examples illustrate some of the tech-

niques used in applying the block programming meth-
ods. Examples are given for linear elements only.
Non-linearities can be included simply by replacing
the potentiometer corresponding to the non-linear ele-
ment with a multiplier, function generator, or other
suitable computing element. Backlash, hysteresis,
stiction, etc can be included as required.

3. In mechanizing an equation, set the highest
order derivative only on the left of the equals
sign to obviate the necessity for differen-
tiation.

4. The mechanization is accomplished by:
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TABLE II. Two-Element Computing Blocks

MATHEMATICAL
SCHEMATIC RELATIONSHIP PROGRAM BLOCK
K
Y-K(X, -X,)
X X _ 1~ %2
I 2| Xy -%y) = ——F—F
a's
— Y
R
1
S |, IR (E-Ey
(Ey - Ep) = sC K
— |C__ . a,
K =(X,- X
Y Y () %)
a
X X F-K(E, - E,) e/
— —"2 X, -X)) = — 1 2
—T18 1 2 sB
L
—  —=F
1 1B
i
v v F-B(v,-v,)
| 2 _ B 1 2
“E (vl VZ) - sM
—
- k 1/a-s X2 (X, - X,) - KY
Y = —5%——
— ars (X
o/
R L
El AA A (TT\ E2 L. (El-Ez)-RI
1 sL xI -y
-
v 1 1B v F
| E i 2 . (v1 - v2) - B
——F F M
XI— a5 /s X2 X, - %, - L
Y=
—Y
L 1 Y
E—Je— € | Fim B s
sL X
———-—I ' ~Y
. -X2
K - By
F,_I_[E:_rYY\_Fa (Fy - Fp) -5
v =
sM
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MASS - SPRING - DAMPER SYSTEM

A
X,V Xo 4 V.
/] '
g (LM} _” B 21 V2
/ K, |
/] < MOTION IN X
A K _@ I >F  DIRECTION ONLY
—~ 2
ﬁ OO Y1~ OO
//

ST TS S S

Element - force equations
Spring K;: F; = K, (X1 - 0)
Initial values att = 0.

X, (0), X, (0), v, (0), vy (0)

Spring K,: F o = K, (X2 -X

s2 1)

Damper B: FD = B (v2 - v1)

Forces acting on masses

Fmi = "Fe1 * Fep * Fp
FM2 = -Fs2 - FD + F
Steps to mechanize
1. Assume Xl, -XZ, -~V Vg and F are available

2. Draw blocks for Ml’ M2

3. Draw blocks for Kl’ K2’ B

4. Make input connections to mass blocks to produce Xl, -X2, vy Vg

T
| L gx | I |
I | | | |
l | | | | |
Y S| | (0
-V v
| | | ' I 2
L L
| }Q | Q| | O] O, |
! ""snl ‘V1M|: B | Fs2 : vaMg |
| |
| ' MI|V|(O) | | Mo\o(0)
| I i | i
| | v T <F
SPRING | | MASS| [DAMPER | SPRING2 & MASS2 |
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The above mechanization makes each parameter avail-
able as an individual adjustment. The programming
is easily accomplished by generating the forces im-
posed on the elements and then operating on the forces
to obtain velocity and displacement. Any or all of the
initial conditions, X;(0), X2(0), v1(0) and v2(0), may
be zero, or may also be variable.

Note that the block representing the damper contains

two summers. The first summer produces (vl - vz),
and the second summer acts only as a signchanger.
The two-amplifier, one-pot combination canbe reduced
to a more simple two-pot combination by connecting
vy and vy through B pots to the mass block inputs.
The less complex alternate is shown below. This con-
figuration requires fewer amplifiers, but variations
in Ml’ M2, or B necessitate two or three adjustments.

K)

_x 2
v2
K 1
2 MZ
oMo
B
Mz

d|

[ .
/'\
-

* Do not connect to -v, to get pot setting of B instead
of %— . A coefficient pot output cannot be connected

1

to another coefficient pot input. This is a practical
limitation of the computer hardware.

Rigid Bar Supported on Springs

Fl I Fz
| /'/ 2
———
R
]
bty .l
K, F Ky

a= 22 11 F
sl

F,=KY

F2 = -KZY2

Rigid bar of mass M, moment of inertiaabout C.G. of
I. Assume 0 smallsuchthat 6 ~sing. Vertical motion
only. YO is displacement of C.G.

{( ) F1+F2+F
0 sM

Y1 = Yo-lle

Y2 = Y0+120



MASS

I
i I

SPRING 2 [ROTATIONAL |

SPRING 1 T

One-Dimensional Heat Transfer

K- THERMAL CONDUCTIVITY

M-MASS

K=0

C —SPECIFIC HEAT

M3C3

—

Qy | Ko

M2 Cp

K

Q,

M C

K=0

_
_

|

| T3
[

I

|

I

| M
|

|

|

|

|

| THERMAL
' MASS

2
MAL
UCT-

K

Q2
BER

ANCE

O
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E, -E> Ez/R3

ri—
Py
o

C|_ 1
I
-C\(E|-E2) Cz (Ex-E3)Cyp
I
I > >'I' .
TWIN-T NETWORK
. E - By 5 - I -1
9 R1 ’ 3 SC3
E,-E
Cl E C2 I o= ZR ?
[l Lo
—l5 ‘].7 —lg
I R Ra2 Ig ~(g + 1)
— o—— N/, N\ 3"": (E4— E2)= =
B sl | I 13 2} 2
<
;9= <R3 <RL
s -5
H (El - By =—5¢c
I e 3 '
E4 = (I1 -1, +13 +18) R3
E, = (E, - E) +E; Ey = E4- (B4 - Eyp)
E) I-EB
———
<72
{ l/- \ 7/
(EqE)) :; (Eq B Y
SE3

ol
M
\/
|-
Q-
N\
A
|
N
\_TI—
|-
-

o

I

C
(4]

y
:
L

I o> ] [

(I~ +I5+1g)
R3
-Eg4
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CHAPTER 5
SCALING

The analog computer is voltage limited to a practical
range of operation of +100 volts as a maximum and +1
volt or zero as a minimum. It is usually not possible
tonumerically equate analog voltages to physical vari-
ables. That is, the magnitude of physical variables
must be scaled to fall within the useful range of the
machine. Thisprocedure is called amplitude scaling.

The analog computer is also limited as tothe speed with
which it will solve a problem. Practical bounds on
solution time are 100 seconds as a maximum and 100
milliseconds as a minimum. Events in the physical
world usually occur in time intervals which fall out-
side these limits. Thus, the simulation of real world
phenomena with the analog computer is ordinarily
faster or slower. The procedure for relating computer
time to physical time is called time scaling.

Correct scaling is an important factor inreducing sim-
ulation errors. An error analysis of any particular
program is about as complex as the problem which is
being solved by the program. Consequently, except
for unusual cases, an analysis of error is not made.
An estimate of the accuracy of the program can be
found from check cases for whichthe answer is already
known. Error is reduced by scaling the program so
that all potentiometer values and amplifier gains are
reasonable. Frequently, in the process of scaling a
problem, it will be found that some parts of the model
are not significant and can be eliminated. Scaling is
a good check on reasonability.

Scaling is an art, not a science. A good deal of exper-
ience is required to become proficient. Scaling canbe
done inseveral ways. Thetechniques discussed in this
chapter are those in most prevalent use among analog
programmers.

If X is a physical variable corresponding to computer
voltage, V, then a scale factor, a, is chosen so that

V=a-X

will fall within the practical range of the computer. It
is good practice to make V as large as possible. If

is physical (real) time corresponding tot,, the com-
puting time, then these two can be related by a scale
factor, N:

t = Nt, d™ = NTat™
c p ¢ P

It follows that
S, = Nf(Fat,. 1)

N is chosen so that the problem solution time on the
analog computer falls within reasonable limits. Prac-
tically, this is accomplished by a choice of N which
will not result in prohibitive amplifier gains.

The general procedure for scaling is:

1. Generate anunscaled program having a math-
ematical structure which agrees with the pro-
blem (model) to be solved.

2. Identify the location of all voltages corres-
ponding to physical variables.

3. Associate a scale factor with each of these
voltages (e.g. VX = axX).

4, Label the program with the scaled physical
variables (i. e. axX) rather than the voltages.

5. Estimate maximum values of the physical
variables.

6. Choose the amplitude scale factors andthe
time scale factor, N, so that all pot settings
andgains are reasonable.

In order to accomplish step (4) it is necessary to know
how input and output scale factors are related for
various computer elements.

POTENTIOMETER

Physical equation: Y = bX

Scale factors

-
aY
Scaled equation : Vy = b-:g Vx
Program axX ( ) ayY
ba
A
a
X

Note that a scale change canbe made withapot. Assum-
ing either a, or a.X has been established previously,
the other is choseh so that bay/ay is a reasonable pot
setting. The pot can be used solely for a scale change.
In that case b = 1.

SUMMER

Physical

equation: Z = X + Y

Scale

factors : V. =a Z, V_=a X, V_ =ayY
z z X X y ¥y

Scaled a, a,

equation: Vz =?x— Vx + a—y Vy
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Now, if only one-gain inputs for the summer are used,
then it must be true that a, =a =2 and the pro-
gram is y

-0y, X

-OyY_.___1

a;Z

Thus, it is seen that input scale factors must be the
same for a one-gain summer and that a change of
scale cannot be made through a summer. However,
adifferent input scale factor can be used for a 10-gain
input. The program for this case is,

-ayX
-a,Y 10

where it must be true that a, = 10ay.

INTEGRATOR

As with the summer, the input scale factors (except
for the 10-gain input) must be the same. However, a
change of scale can be made with an integrator. Both
amplitude and time scaling can be done. Scaling for
an integrator is derived below, where C is the value
of the capacitor in ufd, and R is in megohms.

Physical
equation: Y =j'thp
Scale
factors : V_=aY, V_=a X, t = Nt
y y X X c p
Scaled ay 1.
equation: Vy= Ta‘; . ﬁJ’detc
Thus, the integrator gain, RI—C; must be
1 _ %y
RC ag (2)
and the program is
-axX NayY
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MULTIPLIER
Physical
equation: XY = Z
Scale
factors: V. = a X, V ayY V =alZ
X X y z
Scaled
equation: V_V 100a
X'y zZ v
100 ° a_a z
Xy
Program:
axX a,Z
ayY
It must be true that
100a,
—Z -1,
a_a
X'y

From this requirement itis seen that the relationship
among the scale factors is the same as that for input and
output multiplier voltages:

a_a
a, = Xy
100
DIVIDER
Physical X
equation: = 2
Y
Scale
factors : V_=a X,V _=ay¥Y V_ =aZ
X X y y z
Scaled Vx aa
equation: 100V— . _LlOOa = VZ
y X
Scale
factor a,
constraint: a_ = 100—
4 a
y
Program:
axX : - a,Zz




SQUARE ROOT

Physical

equation: Y = \/}?

Scale

factors : Vy= ayY, VX = aXX
Scaled a

equation: V_-= y

y1o/§'

Scale
factor
constraint: =
aini ay 10‘/aX

Program:

Oy X ] e ayY

FUNCTION GENERATOR

Physical
equation: Y = f(x)
Scale
factors : = =
Vy ayY, VX axX
Scaled
equation: V. = af(—*
y y a
X
EXAMPLE;
Mass-spring-damper system
e g& ' X
dtp
/
1B 4
I /
M 4
I Y'Y Y\ 4
K 2
Physical
equations: Spring Force, Fs = KX
dX
D = B=—
amper Force, FD Bdt
p
Mass 2 -(F_+Fp)
Acceleration, d——z = SM D
dt
p
1. -4 -5
M=1;B=4x10 ;K=6.4x10

dX
ag (0)=0, X(0)=.95

Estimates: (—gtl) =8x 10_3; Xmax. = 1
max

P

The unscaled program is:

-X(0)

The scaled program is obtained by assigning literal
scale factors, determining their numerical values, and
calculating the coefficient potentiometer settings.

A -: -100
e Lﬁ i aX({o)
| NZ dtp? | %?(_ 100
1
|-l
/=)
3
¢B dx B
NZMdt, NbM
&O—<3|
&) <
cKX cK
NZM NZaM

The L a.nd—l- factors appear
NZ N

due to the inherent gain of N

through each integrator, from

Eq. (1).

In general, the determination of the numerical values
involves a trial and error approach. Any convenient
parameter can be picked for the starting point. If a
selected value leads to unreasonable potentiometer
settings or unreasonable amplifier gains, then new
values may be required. Reasonable pot gains are
between .1 and 1. Reasonable amplifier gains are
between 1 and 20. Amplifier gains should be integer
values. Non-integer values can be obtained from a
potentiometer, in combination with gain-of-10 inputs,
if necessary.

1. Determination of a. In order to utilize the
full dynamic range of integrator 2, set
aX max = 100 (volts).

a = 100
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Potentiometer 1 setting.

= .95 (3)

Determination of % At this time, a trial

value for N may be selected. Analog solution
times of . 1 to 100 seconds, or computer nat-
ural frequencies from .1 to 100 radians per
second are the preferable operating ranges.
Anestimate of the physical time or frequency
ranges can be used to select a value for N.

For this example, a valueof N = .01 appears
reasonable.

b _ 100 (volts) (@)
N (dX7dtp)max.

Looking ahead, note that integrator 2 will

require a gain of %_N . The gain of N is in-

herent in the integrator from Eq. 1. There-
fore, the R_lc value for the integrator will be
%. It is highly desirable that this factor be
an integer, preferably either 1 or 10. There-
fore, b = 100 will be used. The effect of this
is to force integrator 1 to utilize something
less than its full dynamic range, but the effect
is not serious inthis example. As a general
rule, it is not possible to scale so that all
amplifiers work over their full range.

=100

Potentiometer 2 setting;

3)c (5)

P2 = CZK = (6.4x 10"
N aM

The value of ¢ is chosento assure that a rea-
sonable value for P2 is obtained and to assure

that—ck2 is an integer.
¢ = 100 will satisfy both conditions.
P2 = .64
Potentiometer 3 setting:

cB _
P3 = YoM - .04

This setting for potentiometer 3 is below the
desired minimum potentiometer setting value
of .1. Inthis example, however, it is not pos-
sible tohave a large setting for potentiometer 3.
This follows from a consideration of the phy-
sical problem. The damper, B, was chosen
tohavea very slight effect on the mass-spring
system, so it necessarily follows that the
portion of the analog program related to the
damper will have only a slight effect. It should
be noted that abnormally low potentiometer
settings will frequently arise in simulations of
systems containing negligibly small elements.
It should be recognized that the low settings
stem from the actual system characteristics.
The programmer, therefore, need not spend
time in futile attempts to improve the scaling.

The final program with numerical values is:




GENERAL COMMENTS ON TIME SCALING:

The following points concerning time scaling are of
particular importance:

1.

If all integrator gains are simultaneously
changed by a factor k, the time scale changes

from N toy- and all computer frequencies

k b
increase by k. The amplitude scaling, how-
ever, does not change. All numerical scale
factors, all potentiometer settings, and all
computer problem voltages remain the same.
This property of amplitude invariance under
time scale change allows the programmer to
easily speed up or slow down the computer
solution.

The most convenient way of changing all inte-
grator gains simultaneously is by changing
the capacitors by a fixed factor. Integrator
capacitors can be simultaneously changed by
means of the computer Time Scale control®.

An event which occurs in a fixed real-time
interval can occur in several different com-
puter time intervals depending on the choice
of integrator capacitors, that is, depending
on the time scale factor.

Events of identical character which occur in
different real-time intervals can all be made
to occur in the same computer time interval
by appropriate time scaling.

1 6n the SD 10/20 and SD 40/80 analog computers, a master Time Scale switch is a standard feature. This per-
mits fast and convenient switching of capacitors that are patched -- up to 1000:1 time scale (x10,x100, x1000,
depending on patch panel connections).
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CHAPTER 6
COMPUTER OPERATION

This chapter is based on materials from the Systron-Donner 10/20 and
40/80 Computer Operating Manuals. The descriptions of the computer
mode controls, computer logic, and various computing modules permit
the reader torelate all applications and programming examples given in
this handbook to an existing computer. For example, Chapter 8 offers
detailed information on the use of digital logic. The modules needed to
implement the applications described in Chapter 8 are shown in this
chapter.

Not all available S-D computing components are described here, only
those which illustrate and serve to explain a basic function. For the
latest, up-to-date availability of all computing elements and modules in
the SD 10/20 and 40/80 series, please consult Systron-Donner or your
nearest SD engineering sales representative.
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SD 10/20 Computer

The Model SD 10720 is an all solid state analog com-
puter with an operating range of +100V and expansion
capabilities for up to 24 operational amplifiers. The
principle features of the computer are full +100V com-
puting range, all solid-state design, compact modular
construction of all computing components, removable
problem board which mates directly with computing
modules to eliminate all problem board cabling, a
control center with readout selectors for amplifiers
and potentiometers, high-speed reed relays and solid-
state switches, complete logic capability for repetitive
and iterative operations, 0.01% accuracy of computing
resistor and capacitor networks, a panel voltmeter
having a null mode of measurement with 0.02% (of full
scale) resolution. The amplifiers are protected against
accidental grounding of their outputs as are all power
supplies.

All computing components in the Model SD 10/20 are
modular plug-in units. They are identical to those
used in the larger SD 80. This high degree of standard-
ization between SD 10/20 and 40/80 computers maxi-
mizes . usefulness of computing modules. Since all
modules are standard plug-in units, the computer user
is offered a wide choice of computing components.
As new modules become available, the SD 10/20-40/80
series computers can thus be constantly up-graded to
include the new modules. Furthermore, a user may
start with an SD 10/20 and later use the same 10/20
modules in an SD 80. This common design feature
results in important cost savings. As the need for
more computer modules increases, the expansion cost

from an SD 10/20 to an SD 80 is minimized.

Panel Meter Ranges: 1, 3, 10, 30, 100, and 300 volts, and
—+ null. Full scale accuracy: 3%. Null position provides
0.02% F.S. resolution with reference potentiometer having a

+0.05% linearity at 25°C.

2] Compute Time Selector — compute time continuously vari-
able from 5 msec to 10 sec. Reset time varies from 5 msec

to 5 sec, depending upon coarse steps of compute range.

Meter Range Selector — with positions for 300 v, 100 v, 30 v,
10 v, 3 v, and 1 v. Serves also as sensitivity adjustment for

=+ null.

Function Selector — for rapid choice of: + null, — null,

Meter, External (connects selected bus to external jack).

Address Selector — address of all amplifiers and potentio-
(5]

meters.

@ Null Reference Potentiometer — provides high accuracy
readout using null method with 0.02% F.S. resolution. Lin-

earity is =0.05% at 25°C.

Function Switches — provide manual switching flexibility

in problem solutions.
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[8] Mode Selection (lighted pushbuttons):

Hold — places problem solution on all integrators into
hold position.

Compute — applies problem voltages to all integrators.

Reset — applies initial condition voltages to integrators.

Rep-Op — places integrators into a repetitive operation
cycle. Compute time variable from 5 msec to 10 sec.

Bal/Pot Set — disconnects junction and grounds the
input resistor summing junctions of all amplifiers.
Each amplifier is converted to a gain of 2500 for
precision monitoring of junction offset.

Pwer On/Off — energizes and de-energizes computer.
Oven — indicates + 28-volt oven power is on to maintain
constant temperature of computing capacitors.

OL Hold, OL Reset — lights up when any amplifier is
overloaded. When depressed, computer goes into
Hold; when released, normal operation is resumed.

Time Scale — activates relays in each integrator module
to change computing capacitor. (x 10, x 100, x 1000,
depending on patchpanel connections.)

Slave — permits operation of computer control circuitry
from a second console.

Coefficient Potentiometers — up to 24, available in groups
of 6, featuring 10-turn wire-wound with lockable counting
dials.



SD 40/80 Computer

The same compact design and high performance com-
puting capability found in the small SD 10/20 computer
is also available in the large SD 80 computer. With an
expansion capability to 84 amplifiers (126 special
order), 125 potentiometers, and a full set of digital
logic control modules, the SD 80 provides a problem-
solving power capable of handling large, complex
problems normally associated with the simulation of
dynamic electrical, mechanical, thermal and similar
systems.

Yet, the large-capacity SD 80 fully retains the
versatility of a desk-top computer. Mounted on a desk
or table equipped with lockable casters, it can be
easily moved to new locations. In addition to creating
a highly compact and rugged computer, the all solid
state design increases reliability, simplifies mainten-
ance, and eliminates the need to operate the computer
in an air conditioned laboratory environment.

Programming a problem on a fully expanded SD 80
is virtually as simple as operating a small SD 10/20.
Visual computer circuits in symbols everyone under-
stands show at a glance how a circuit is patched.
This feature saves time, reduces patching errors, and
makes patching a task that the non-expert can perform.

To allow maximum operator control over a computer
with a capacity as large as that of the SD 80, all com-
puter controls are centralized in the left wing which

1. Digital Voltmeter — 5 digit readout, automatic ranging and
polarity.

2. Address Selector Panel — with an amplifier and potentio-
meter address capability of 199 points.

3. Control Panel — for selection of:

Op. Modes: Hold, Compute, Reset and Rep-Op.

Master Time Scale Switch.

Compute Time: 5 msec to 5 sec.

Reset Time: 5 msec to 5 sec.

Slave: for remote control.

Oven and Power pushbuttons.

Check Mode switches for Static and Dynamic checks.

Overload Controls for: 1) audio alarm, 2) transfer to hold
mode, 3) removal from Hold mode.

Amplifier Balance and Pot Set: changes all amplifiers to
gain of 2500 for simplified monitoring of junction off-
set; and for proper loading of potentiometers.

is movable to any convenient position to suit the
operator. Major SD 80 controls that speed and simplify
problem checking and solving include:

¢ A 199-point digital address pushbutton selector
system for rapid access to amplifier outputs and
potentiometer arms.

¢ Static and Dynamic checks by simple pushbutton
control to verify patching and test time scaling
rapidly.

¢ Instant alarm controls, both visual and audible,
with automatic transfer to HOLD at the occurrence
of an overload.

¢ Individual control of compute and reset times for
precise adjustment in Iterative and REP-OP modes.

¢ Time scaling the problem with a single switch on
the Control Wing.

¢ One pushbutton to check any amplifier’s balance
without repatching and to set any potentiometer.

The problem board is removable, just as it is with
the SD 10/20. There is no restriction as to grouping
of the modular patch panels in the overall problem
board layout. In both the SD 10/20 and 40/80 compu-
ters, digital logic control is provided by modular plug-
in units that slip into the central patchbay. They thus
form an integral part of the computer and the main
problem board, not a separate added-on element.

Function Switches

5. Coefficient Potentiometers, No. 1-5

6. Null Meter Reference Potentiometer

7. Removable Patchboard. — An SD 80 board can hold up to

42 individual computing module panels. All modules
are mounted in a universal patchbay directly behind
the removable problem board. Nomenclature on patch
panels matches textbook circuit diagrams. Operator
can thus ‘‘see’’ the circuit while patching a problem.

8. Built-in Digital Logic Modules, consisting of Flip-flop,
Gate, and Time/Event Control Modules.

9. Potentiometer Wing can hold up to 6 panels for a total of
125 potentiometers (first 5 pots are on Control Wing.)
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Computer Logic

Each operating mode switch energizes a logic buss Logic Buss Description
which is then distributed to the logic relays in the com-
puting modules (primarily to the integrators). The logic F.R.(R.0.) ________For.wo.rd Reset (Repetitive Operation).
levels in the Analog sections of the computer are: This is the normal Reset buss and also
is the Reset buss energized in the reset
+28V = True = logical 1 portion of Repetitive operation.
OV = False = logical 0
R.R.(R. 0.) Reverse Reset (Repetitive Operation).
A logical one energizes a buss and places the com- This buss is the logical complement of
puter in that mode of operation. All contradictory modes forward reset. It is used for complemen-
have their switches interlocked to prevent two modes of tory integrators and track/store circuits
operation from being energized at the same time. in iterative computation. Energized in
the Compute mode of operation and in
The table that follows outlines the logic busses and the Compute portion of Rep-Op.
operating modes. F.R. (R.T.) Forward Reset (Real Time). This buss
is used to reset non-repetitive operation
In most cases the nomenclature for each logic buss integrators. It is energized only when
is self-explanatory. The following explanations should the reset switch is engaged.
clarify the remainder of the logic nomenclature.
F. H. Forward Hold is the normal Hold buss.
It is energized in the Hold mode of
operation or if an overload occurs when
the Overload Hold switch is engaged.
R. H. Reverse Hold. Reverse Hold is the logi-

cal complement of F.R.R.T. Iltisused for
complementary integrators and Track/ |
Store circuits in iterative computation. ;
Energized inthe compute mode of opera-
tion and in Rep-Op.

Table 1. CONTROL LOGIC TABLE
COMPUTER OPERATING MODE
LOGIC
BUS POT-SET . MANUAL | PROBLEM| O.L. [ STATIC | DYNAMIC | TIME SCALE
BALANCE |RESET |COMPUTE| REP-OP| ") b | HoLD |HOLD | CHECK | CHECK | CHANGE

Bal. +28 0 0 0 0
Pot-Set +28 0 0 0 0 +28
F.R.(R.0.) 0 +28 0, +28 0 0 0
R.R.(R.0.) 0 0 +28 +28, 0 0 0 0
F.R.(R.T.) 0 +28 0 0 0
F.H. Bus 0 0 0 0 +28 +28
R.H. Bus 0 0 +28 +28 0
Static Ck. +28 0
Dyn. Ck. +28 +28
Time Scale 28

Blank indicates either 1 or +28 condition can exist, two values indicate cyclic operation.

Manual Hold is actuated by pushbutton switch on Logic Control Panel.

Problem Hold is actuated by application of +28V or greater Problem Hold Trunkline on Problem Board...
(Note: Will nat be damaged by any voltage in computer range)
O.L. Hold is actuated by operating **0.L. Hold"" switch with an
the computer.
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Use of the Mode Controls

The mode controls are of the push button type with
interlocks to prevent two contradictory modes from being
energized at the same time.

All control in the computer is accomplished in the
integrators. Thus, when a mode is energized it opens
or closes a relay in each integrator. Reference to the
illustration, Integrator Block Diagram, on following page
(6-6), while reading the following explanations will
assist in understanding the control system.

Reset

The Reset or Initial Condition (IC) mode enables
the integrators to be set to their initial values before
starting computation. When the Reset relay is energized,
an input and a feedbackresistor are associated with the
integrator amplifier making it, in effect, an inverter.
Applying a voltage to the input resistor {in this case the
IC terminal) will cause that input to appear at the output
ond to simultaneously charge the integrator capacitor
to the same voltage.

Compute

In the compute mode there are no energized relays.
The logic is such that if the computer is not in Hold and
not in Reset, it is in compute.

Hold

In the Hold mode a normally closed relay contact is
operied which disconnects the input. signal from the
amplifier. As there is no discharge path for the inte-
grator capacitors the output will remain at its last com-
puted value. In this manner outputs may be read or re-
corded and the problem resumed at will by returning to
Compute.

Rep-Op

In the Rep-Op (Repetitive Operation) mode the com-
puter is automatically switched between the Reset and
Compute modes of operation. This mode enables the user
to obtain repetitive solutions which are easily monitored
on an oscilloscope.

The amount of time the computer stays in the compute
mode is determined by the setting of the Compute Time
switch located at the lower left of the control center.
The outer dial of the switch may be positioned in any of
three ranges: .005 to .1 sec, .05 to 1 sec, and .5 to 10
sec or in the External (EXT) position. The inner dial
adjusts the compute time over the range selected.

The compute and reset times may be adjusted arbi-
trarily by observing the solution to the problem and ad-
justing the times until the desired display is obtained.
If more precise compute and reset times are required the
Compute-Reset cycle may be observed on an oscillo-
scope. Connect the oscilloscope to any of the FOR-
WARD RESET terminals on the integrators or to Test
Point 6 at the rear of the computer. A rectangular wave-
form will be observed. The positive (+28V) portion is
Reset, the negative (OV) portion Compute. The Reset

and Compute time controls may then be adjusted to give
the desired times.

If the Compute Time switch is placed in the External
(EXT) position external circuits may be used to generate
the Rep-Op cycle. The drive signals must be compatible
with the logic used in the computer (+28V = True, OV =
False) and should be connected to the R (reset) and
C (Compute) terminals located on the problem board.

OL Hold - OL Reset

When engaged, the Overload Hold portion of this switch
will cause the computer to gutomatically switch to the
Hold mode at the occurrence of an overload in any. ampli-
fier. When the overload is found and eliminated, the
switch is re-engaged toreset the overload hold circuitry.

If an overload occurs, the light within the OL Hold
/OL Reset will begin to blink on and off and will con-
tinue to do so until the overload is removed.

Time Scale

The Time Scale switch determines which of the
integrator capacitors connected to the A and B terminals
on the integrator modules is in the circuit. With the Time
Scale switch not engaged, the capacitor connected to
the A terminal is in the circuit. When the Time Scale
switch is engaged the capacitor connected to the B ter-
minal is in the circuit. Any two of the three available
capacitors may be patched to the A and B terminals. If
time scaling is not required the capacitors may be patch-
ed directly to the output.

Special Trunklines

There are six special trunklines located on the pro-
blem board of the Computer. These are located on the
top left row of modules. The first module contains the
M, X and Y special trunk lines and the third module
contains the H, C and R special trunklines. The special
trunklines are used as follows:

M: This line is connected to the panel meter ar the EXT
jack as determined by the position of the Meter Select
Switch. If the Meter Select Switch is in the METER
function the M line is conriected to the EXT jack; if
the Meter Select Switch is in the EXT function, the
M line is connected to the panel meter.

X &Y: The X and Y lines are connected directly to
the X and Y terminals on the left side panel of the
computer. These lines are intended for use with an
X-Y plotter but may be used to connect signals to
any external device or they may be used to connect
external inputs into the computer.

H, C&R:
lines are used as external input lines to the Control
Logic circuitry. A logical 1 applied to any of the
lines will place ‘the computer in that mode of opera-
tion. To use these lines the computer must be in
REP-OP and the Compute Time switch must be in
EXT.
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Integrator Modules

50k N
Ic

INPUT GAIN g RESET

T
s %1

eli—o o 1 ittt
—r - B our

Integrator Block diagram illustrating flexibility
of circuit and patching convenience.

DYN,
lﬂﬁtl

B v

T
4
o
(S P
s
€
A
L
3

'3100 Model 3320

% 33 Dual integrator with two uncom-
mitted operational amplifiers.

. Model 3329

Quad integrator, dual multiplier,
operational relay. Contains four
integrating networks, two four
quadrant multipliers and one

operational relay. Also available,
less multipliers, Model 3329A.

Model 3320, Dual Integrator
The Model 3320 is divided into three sections: the

top and bottom integrators and a logic section common
to both. Basic patching of the integrator requires only
a patch from the end of the integrating capacitor to the
A terminal of the time scale relay. By patching the end
of another capacitor to the B terminal a second time

scale is set up and is controllable by the TIME SCALE
switch on the control panel.

Initial conditions (IC) are applied at the IC terminal.
The source of the IC voltage may be a pot, amplifier
output, the reference voltage, or from an external source.

The logic section consists of a 7-terminal matrix
near the center of the patching block. The nomenclature
is the same as that explained in the Logic Control sec-
tion of this manual. The two center terminals of the matrix
are connected to the coils of the Reset and Hold relays.
For normal and repetitive operation, patch from the F
(forward) terminals to the relay coils. For reverse and
iterative operation, patch from the R (reverse) terminals
to the relay coils. For nonrepetitive operation, patch
from the F(RT) terminal to the reset relay coil. (In this
mode the .integrators will reset ONLY when the reset
button on the control panel is pushed.) Note that the
logic patching controls both integrators in this module.

To use the integrator as a summer, patch from the
input side of one of the resistors to the output of the
integrator. This will connect a resistive feedback around
the amplifier; the other resistors may be used as summer
inputs.
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Model 3329 - Quad Integrator,
Dual Multiplier, Function Relay

The Model 3329 has four integrating networks without
operational amplifiers. The operational amplifiers neces-
sary for integration are normally patched into the Model
3329 from an adjacent Model 3325. The input resistor
network of the Model 3325 then becomes the input to
the integrator. Relay logic connections are in the lower
left hand section of the Model 3329 patchboard. Nomen-
clature is the same as that used on the Model 3320, Dual
Integrator. Each Integrator Network has a Hold (H) and
Reset (R) terminal associated with it, these terminals
must be individually patched to the Relay Logic termi-
nals. The Squid (multiple) patch cords should be used
when more than one integrating network is to be used
at the same time.

The Dual Multiplier section of the Model 3329 may
be patched for division, squaring and square root func-
tions as well as for multiplication. For multiplication
or division operation, three operational amplifiers are
required. In the division and square root functions arbi-
trary limitations as to polarity and relative amplitude of
the inputs are imposed. For example, in division the
Y input must always be positive and equal to or greater
than the X input. Note that in square root an external
diode must be patched into the circuit.

Patching and operation of the Function Relay in the
Model 3329 is identical to that of the Function Relays
in the Model 3322A. The relay is energized by a nominal
+28 volt signal and will not be damaged by a signal of
up to +100 volts.



Summer Modules

Model 3321: Dual summer with
two uncommitted operational
amplifiers.

Model 3325: Quad summer, four
summing networks, with four
uncommitted operational
amplifiers.

Model 3321 — Dual Summer

The Model 3321 contains two operational amplifiers and
the components necessary for summing operations. Basic
patching consists of connecting one end of the feedback
resistor to the output. The top summer has three input
resistors, the bottom summer two input resistors. There
are four spare summing resistors located in the center
section of the module which may be used as either input
or feedback resistors with either of the summers.

The module also has two 20 kohm resistors and
two uncommitted diodes associated with each summer.
These may be used to patch the summer as a limiter-
comparator or for any of the common diode circuits used
in computation.

A function switch termination is provided on each
summer module. The function switch is a single pole-
double throw type switch and is physically located near
the control center. Normally only the first three summing
modules will have switches terminated in them.

The center section of the summing module has ter-
mination for a diode function generator. Use of these
terminations and of the diode function generator is ex-
plained in that section of this manual.

Model 3325 — Quad Summer

The Model 3325, Quad Summer is identical in per-
formance to the Model 3321, Dual Summer. As illustrated,
patching of the Model 3375 is, however, considerably
different than that of the Model 3321. Basic patching for
any of the four summers in the module consists of patch-
ing the SJ’ terminal to the J terminal and patching the
right end of the feedback resistor to any of the output
terminals. Any of the resistor input networks may be
used with any amplifier. Thus summers with six, nine
or twelve inputs may be patched.

The Model 3325 also contains four spare resistors,
four diodes and four trunk lines. In addition, it has
terminations for a Function Switch and for a Diode
Function Generator.

The Model 3325 is also used as a source of amplifiers
for the Model 3329. When used in this manner, the Model
3325 furnishes the amplifier and input resistors for the
integrator circuit.
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Model 3322A — Dual Inverter, Dual Function Relay
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Model 3322A: Dual inverter, dual operational relay. Two
uncommitted operational amplifiers with
two operational relays.

The Dual Inverter contains two operational amplifiers
for use as inverters or high gain amplifiers in comparator
and limiter circuits. Operation as an inverter requires
two patches: (1) From the summing junction to the junc-
tion. (2) From the input side of one of the resistors to
the amplifier output. The inverter may be used as a
summer by patching additional resistors into the sum-
ming junction. (Note: Potentiometers used as inputs
to the Model 3322A should be set in the Reset mode of

operation.)

The Model 3322A also contains two function relays.
Each is a two form C (2FC) relay corresponding to a
double pole-double throw (DPDT) switch. The relays may
be energized by any voltage from +28 volts to +100 volts.
The energizing source is typically the output of an amp-
lifier or a logic signal, but any source within the +28
volt to +100 volt range will energize the relays. Any
voltage in the range plus and minus 100 may be applied
without damage.

As in the Dual Summer, the Dual Inverter contains
uncommitted diodes, limiter resistors, terminations for
a Function Switch and Diode Function Generator ter-
minations. The use and operation of these elements is
the same as that described in the section on the Model

3321.
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Model 3323 — Dual Inverter, Dual Multiplier

Model 3323: Dual multiplier, two four quadrant quarter
square type multipliers with two uncom-
mitted operational amplifiers.

Multiplication Operation. The multiplier/divider is
based upon the quarter-square principle, in which the
following relationship holds:

/4 [ (X+Y)2 - (X-Y)2] = Xy

In £100 volt computers, the multiplier output voltage is
always scaled to -0.01 XY.

The circuitry consists mainly of two diode squaring
networks, one based upon positive polarities and the
other upon negative. For four-quadrant operation, volt-
ages representing X, =X, Y, and =Y must be present at
the inputs to the squaring networks regardless of the
polarity of input voltages.

The center section of the module contains the termi-
nations for the multipliers. The section is divided into
two identical halves, one for each multiplier. The multi-
plier will also perform division, squaring, and square
root operations
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CONNECTIONS FOR MULTIPLICATION

Division Operation. Division is accomplished by the
terminal connections shown in the figure below. The
concept is illustrated by the circuit diagram in the same
illustration. If the output of amplifier 1 is designated Z,
the output of the multiplier must be +.01YZ. By reference
to the basic discussion on operational amplifiers (para-
graph 2.8), it follows that X = =.01YZ, or Z = ~100X/Y.
Since +.01YZ and Z must always be opposite in polarity
to X, it also follows that Y must always be positive in
order to maintain this relationship.

If Y occurs in the problem only as a negative voltage,
apply it to the =Y multiplier terminal and patch the input
and output terminals of the inverting amplifier to the =Y
and Y terminals, respectively. Z still equals -100X/Y.
The absolute value of Y must always be larger than X;
otherwise, the output would tend to be larger than 100
volts, causing an overload.

Y (ALWAYS +)
b

INSERT

G D

+Y
-0.01XZ | mypt-x
DIV. [-R
CHANGE ONLY THESE
CONNECTIONS TO CON-
VERT FROM MULTI-
PLICATION TO DIVISION
X ’___o-loox
Z..X

CIRCUIT FOR DIVISION OPERATION WITH INSERT SHOWING
HOW TO CONVERT FROM MULTIPLIER PATCHING.

Squaring. Squaring is performed as a special case
of multiplication where X = Y. Only one input inverter
amplifier is required. Patch together the R and Y input
terminals and the =R and -Y terminals. Leave the other
connections as for multiplication. The output voltage
taken at the amplifier output terminal represents =0.01X 2

Squareroot Operation. The squareroot operation is a
special case of division where Z = Y. The relationship
Z = ~100X/Y of division becomes Z2 = -100X for -100
<X<0, Z=10VX , for0< X <+100, Z = -10vX .

If X is always negative, patch together the R and Y
terminals and the =R and =Y. If X is always positive,
patch R to =Y and =R to Y. Leave all other connections
as for division.

The Inverter sections of the Model 3323 are similar to
those described for the Model 3322A. The two basic
patches required for inverter ‘operation are: From the
summing junction to the junction and from the input
side of one of the resistors to the output of the amplifier.
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Model 3324 — Dual Inverter, Quad Electronic Switch

Model 3324: Electronic switch, four high speed elec-
tronic switches with two uncommitted
operational amplifiers.

+100 -100
© O.

Electronic Switch Block Diagram

(Connections shown for comparator amplifier)

The center section of the Model 3324 contains four
electronic switches. There are two normally open (NO)
and two normally closed (NC) switches. The normal volt-
age required to excite the switch is a nominal +28 volts;
however, -voltages of up to +100 volts will not damage
the switch. The current required to excite the switch is
less than three milliamperes at 28 volts.

The Electronic switches were designed and are nor-
mally used to replace the reed type relays in the inte-
grator modules. The Electronic switches may be used as
normal switches as long as the input voltage and current
through the switch limitations are observed

Patching to the Model 3320, Dual Integrator is shown
in the accompanying illustration. Patching to the Model
3329, Dual Integrator is similar. Also included in the
Model 3324 are two .001 mfd. capacitors and four .01%,
10 K ohm resistors for use in high speed Sample-Hold
circuits.

The inverter sections of the Model 3324 are identical in
operation and performance to those of the Model 3322A.
Patching is identical to that of the Model 3322A and the

instructions for that Model may be used.

IN O

INTEGRATOR

ELECTRONIC
SWITCHES

Integrator with Electronic Switches



Digital Logic Modules
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Model 3327

Twelve three-input AND
Gates with four relay drivers.

Model 3326
Twelve RST Flip-flops with

four relay drivers.
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Time-event Control. 1 kHz
clock with three decade
dividers, three decade counters
and one gated relay driver.

Model 3326A
Six RST Flip-flops, six AND

Gates and four relay drivers.

Digital control, the new way of multiplying the efficiency
of an analog computer, can be included in the SD 40/80 as
well as the small 10/20 computers. The SD hybrid computer
expansion system is comprised of three types of compact plug-
in modules.

The advantages gained by digital control in an analog com-
puter are of far-reaching significance. Here are some important
new advantages made possible by SD’s Digital Logic Control:

1. Track and hold operation by individual integrators.

2. Sub-routines can be flexibly programmed at different speeds de-
pending on decisions made by logical equations.

3. Program statements can be arranged into a flow chart quite sim-
ilar to those used in digital computation.

The flexibility gained through this interplay of analog/
digital equipment results in:
1. Better and greater problem-solving capacity.
2. Ability to solve a wide range of problems that before could not
easily be handled by an analog computer.

3. Speed. Problem solving time is greatly reduced.

Through digital logic control, sub-routines start and termi-
nate when the corresponding binary control variables change
state as logical functions of:

1. External control (switches, relays controlled by external devices).

2. The states of timers or sub-routine counters.

3. Analog-comparator decisions.

The interplay of binary control variables and analog com-
putation results in a special hybrid analog-digital structure.
Relays or electronic switches implement analog sub-routine
changes under control of digital (binary) control variables
and constitute the digital-to-analog interface of the computer.
Analog solutions, in turn, can modify digital control.

Additionally, in the SD system it is possible to insert a
delay of the Hold-mode command to the Complementary
Integrators. This delay is important because it enables the
C Integrators to store the final values of their inputs in a
problem solution where the C Integrators are tracking rapidly
changing problem variables.

'The Reset-Compute-Hold modes are, of course, settable to
any desired intervals, and it is this new degree of freedom
imparted to integrators that illustrates the importance of
digital logic control.

The combination of the three SD digital logic modules
(Flip-Flops, Gates, Time/Event Control) results in a most
flexible hybrid analog-digital structure. The operator can
easily set all Reset-Compute-Hold intervals of integrators with
the Time/Event Control Module.

A typical example that illustrates the use of SD’s digital
logic is mode control of iterative integrators. In iterative
operation (IO), results obtained during or at the end of one
solution of the problem are used to change parameters or the
circuit configuration (switching) for the next solution. The
following figure shows how in IO, integrators are paired into
normal and complementary (opposite) logic to implement
iterative solutions:

Mode Duty Cycle for Integrators in Iterative Operation

* When programming involves the use of digital control, logic levels for the digital logic elements are the
opposite of those for the mode control and function relays.

* Refer to Chapter 8, *“Basic Operation of Digital Logic Elements,’* for complete operating descriptions
of the Systron-Donner digital logic control modules.
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Function Generator Operation

meters so that a trace of the output voltage on an XY
plotter will match a prepared graph as closely as pos-
sible (visual method). The second method may be faster
but is limited in accuracy by the read-out instrument.

Principle of Operation: The Function
Generator approximates the curve of an arbitrary function
with a series of connected straight-line segments as
shown in Figure 1A. This graph represents the sum of
the individual line segments shown in Figure 1B: Each
line segment corresponds tothe output voltage of adiode
netwark in the function generator. The point along the X
axis where each line begins corresponds to the selected
bias or ‘‘breakpoint’’ voltage. The diode networks are
arranged so that six conduct when the X input is positive
(0 to +100 volts) and six when the X input is negative
(0 to -100 volts). For better accuracy, the input voltage
may be biased to use all 12 networks above or below
zero. Two function generator units can be operated as
a single-channel of 24 segments for more accurate o

simulation. X
A. Straight Line Approximation of a Curve.

Y

The slope of each line segment corresponds to the

ratio of output voltage per volt-change of input and can
" be varied between the values of +2 and -2 by adjusting "
the current flow through the diode network. For steeper
changes of line slope at any point, two or more networks
can be operated in parallel by shifting to the same )
breakpoint. OQ-*'

D
When the individual outputs of all diode networks are e@‘
added together by an operational summing amplifier, the
total output over the entire range of X-inpuf will repro- 0
duce the original- straight-line approximation. No output
is produced when X = 0; therefore, a constant voltage,
Yo, must be added at the output summing amplifier, when
Y is not equal to 0 at X = 0.

B. Outputs of individual Diode Bridge Network th
of which produces the Straight Ligne ;p;oorxif:;aﬁ:nsum

Set Up Procedure: A function may be set up on the shown in Figure 1A,
function generator either by the preparation of a table of
values to which the individual slope and breakpoint Figure 1. Simulation of a Function with Diode Bridge Net-

potentiometers are adjusted, or by adjusting the potentio- work Outputs

TABLE 2. DATA FOR SETTING UP FUNCTION Y = COSX

CONTROL*
X (DEGREES) Y (COSINE) X (VOLTS) Y (VOLTS)

BREAK SLOPE POINT
.90 0 -90 0 -6 -6
-60 +0.500 .60 +50.0 -6 .5 -5
.45 +0.707 .45 +70.7 -5 .4 -4
.30 +0.866 .30 +86.6 4 .3 .3
.20 +0.940 .20 +94.0 -3 -2 2
210 +0.985 .10 +98.5 22—, A

0 +1.00 0 +100 o—

+10 +0.985 +10 +98.5 12 e e—3+1 +1
+20 +0.940 +20 +94.0 s 42 +2
+30 +0.866 +30 +86.6 +4 +3 +3
+45 +0.707 +45 +70.7 +5 +4 +4
+60 +0.500 +60 +50.0 +6 +5 +5
+90 0 +90 0 +6 +6

* Arrows indicate sequence of adjustments.
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Y (VOLTS)

X (VOLTS):
BREAKPOINT:

-60
]
T
-6

SCALING: X: 1 YOLT = 1* {INPUT)
¥: 100 VOLTS = 1.00 (QUTPUT COSINE VALUE)

Figure 2. Typical Groph prepared for setting up the Function
= COSX.

Tabular Method (for Model 3352)

General: The maximum slope change for all segments,
except the first, Kx, segment, is 2.5 : 1. The first,
Kx, segment has a maximum slope change of +5: 1.
Breakpoints may be stacked to achieve greater slope
changes.

Step 1: Set all Break-point/slope change (polarity)
switches to the correct combination of polarities as de-
termined by the function to be simulated. (See previous
discussion on tabulating a function.)

Step 2:  Set all Slope potentiometers to approximately
center position. Set all Break-point potentiometers to
one end as determined by the arrows associated with
the polarity switches. (E.g., if the polarity switch is in
the +BP, +AS or in the -BP, -AS position the break-
point potentiometers should be set to the counter-clock-
wise end.) During this procedure the output amplifier
may go into overload. Although no harmis being done,
the computer may be placed in the Pot Set/Bal mode to
prevent overload. The computer must be returned to
Reset before proceeding with the adjustments.

Step 3: Set the Kx/Yo switch as determined by the
function and by the following instructions:

a. The Yo potentiometer sets the value of Y when X
equals zero. This value may be set anywhere within
the range of plus to minus 100 volts.

b. The Kx potentiometer sets the slope of the first line
segment. The Kx slope is adjustable within the range
of plus to minus five (5).

c. If the Kx/Yo switch is placed in the Cff position
both Yo and Kx will be zero.

d. If the Kx/Yo switch is placed in the Kx position Yo
will be zero, Kx will be adjustable over its range.

e. If the Kx/Yo switch is placed in the Yo position,
Kx will be zero, Yo will be adjustable over its range.

f. If the Kx/Yo switch is placed in the Kx & Yo
position both Kx and Yo are adjustable over their
ranges.

When the switch has been set, the Yo adjustment
should be made. With X = O, the potentiometer may be
adjusted for the proper value of Y at the output of the
Model 3352 (0,). The Null voltmeter or a precision ex-
ternal meter should be used for this and all succeeding
voltage adjustments in this procedure.

Step 4: The Kx adjustment should be made next.
Apply the value of X at the first break-point (BP) to the
input of the Model 3352. (If a potentiometer is used to
obtain the X value its output should be applied through
an inverter to the Model 3352. This will prevent errors
due to the diode function generator loading the potentio-
meter.) Adjust the Kx potentiometer until the proper value

of Y is obtained at the output of the Model 3352,

Step 5: The first break-point (BP) is now adjusted.
Adjust the first break-point potentiometer until the Kx
value previously set is offset by approximately 150 milli-
volts. (0.15 volts) This offset compensates for the diode
characteristics and will help produce a more accurate

function.

Step 6:  Set the input to the value of X at the second
break point. Adjust the slope potentiometer associated
with the first break-point until the output is equal to the
value of Y at the second break-point.

Step 7:  Adjust the B.P. potentiometer associated with
the next segment until the value of Y set in the preced-
ing specification is offset approximately 150 millivolts.
(See discussion in Step 5).

The remaining slope and break-point potentiometers
are set alternately as indicated by the large arrows on
the panel, by repeating Steps 6 and 7 until all segments
have been adjusted.
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CHAPTER 7
LOGICAL ALGEBRA

It is necessarytohave a rudimentary understanding of
logical algebra in order to use logic elements. The
fundamentals of logical algebra are presented for this
reason.

LOGICAL VARIABLES

A logical variable, L, has two values:
1 (true)

0 (false)

ADDITION (OR)
The logical sum, L3 = L, + L,, is defined by the fol-

lowing table: 1 2

Ly Lo | Is
o lo| o
o |1 |1
1 o |1
1|1 ] 1

This is commonly called the OR function and has the
alternative symbology

MULTIPLICATION (AND)

The logical product, L3 = L1 .

L2 is defined by the
following table:

Ly | Ly | Ly
olo | o
ol1] o
1o | o
101 |1

This is commonly called the AND function and has the
alternative symbology

L3:L1F1L2.

COMPLEMENT

The complement of Lis denoted by L. Loosely speak-
ing, L is the inverse of L. That is, whenever L = 1
or 0, then L = 0 or 1, respectively. In manipulating
logical formulas, the two obvious relations below are
often useful.

L+ L =1

al
i
o

L -

COMMUTATIVE LAWS

+ L

il
=
+
|

ASSOCIATIVE LAWS

L, + (L2+L3) = (L

1 i 3
Ly © Ly Ly) = (Ly " Ly) - Ly

DISTRIBUTIVE LAW
Ly - (Ly+ Ly) = Ly~ Ly+ Ly Ly

COMPLEMENTED SUM

Liyv Ly =1, 1y

This relationship canbe seen from the following table:

L1 L, L1+L2 L1+ Ly L1 9 L1 : L2
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

COMPLEMENTED PRODUCT

Ll'L2=L1+L2
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DE MORGAN FORMULAS

|
=

Ly Ly = Ly - Ly

—
[ )
[y
N

These can be obtained by complementing the comple-
mented sum and product formulas.

EXCLUSIVE SUM

The exclusive sum, @, of logical variables is defined
by

L1 ® L2 = (L1 + LZ) (L1 . L2).
This is also called the exclusive OR. L1 ® L2 is the

shaded area of the "'set" diagram below.
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In other words, the exclusive sum is the sum L. + L
minus the product Ly - Lg. A more conveniént ex”
pression for @ can be derived.

L, @ Ly = (L1+L2)~ (Ll-Lz)

(L1+L2) : (L1+L2)
= Ll. L_
- L

+



CHAPTER 8
BASIC DIGITAL LOGIC ELEMENTS

Digital logic can be included in an analog computer.
It is used for making program decisions based on events
occurring during the analog simulation. It is also used
for program mode control. The application of these
elements is discussed in other chapters of this hand-
book. This chapter describes the basic operation of
the logic elements.

OPERATION OF DIGITAL LOGIC IN AN ANALOG
COMPUTER.

Logic levels for the elements are

+28 volts = false (logical zero)

I

0 volts true (logical one)

Most of the elements have a logically complemented
output in addition to the normal output. All of the ele-
ments except the drivers and the dividers have status
lights. When the light is on, the element is in the
"true" state.

All of the elements, with the exception of the drivers,
are designed so that their outputs can be connected
together without damage. This feature is very impor-
tant because it permits an OR operation by connecting
two or more outputs to the same point on the patch-
board. (See driver exception below. )

However, when two outputs are connected together in
this way, they cannot be used as separate logical var-
iables. To avoid this difficulty diodes can be used.
Thus, if Ly, Ly are two logical outputs and L + L3,
Lj, L2 are all required for logical inputs elsewhere
in the program, the circuit below can be used

Ly =L
L| + Lz
L2 >L2

Each of the logic elements will drive any reasonable
number of others. However, the logic elements are
not capable of activating analog control relays or func-
tion relays. For this purpose drivers are supplied.
The driver acts as both a power buffer and logical in-
verter. It should be noted that the logic levels for

mode control and function relays are the opposite or
complement of those for digital logic. That is

0 volts = false (relay de-energized)
+28 volts = true (relay energized)

Thus, the driver not only delivers the current neces-
sary to operate several relays but also provides the
logic level inversion required. To use a driver, the
output of the logic element is connected to the driver
and the output of the driver to the relay input. These
connections are made readily at the patchboard. It
should be noted that the driver is a special element
and its output cannot be used as an input to the flip-
flops or DCU's. It can be used as a gate input.

Important: The driver outputs must never be connected
to any other digital logic output. Con-
necting a driver output to ground (logical 1)
will destroy the output transistor, that is,
if connected to a gate, it should not be
OR-ed with any other element.

The remainder of this section describes the basic oper-
ation of the digital logic elements.

DRIVER

The driver is used as a power buffer and logical in-
verter from digital logic elements to analog mode con-
trol, function relays, and electronic switches. 1Its
logic levels are

INPUT OUTPUT
0 (false) 0 volts
1 (true) +28 volts

The program symbol is

S
L

GATE

The logical gates are of the coincidence type. With the
exception of input number 1, they operate as AND gates
only on the inputs connected. That is, if no logical
variable is connected to one of the inputs at the patch-
board, then this input is essentially de-activated. Note
that this is the same as connecting a logical 1 to the
input.
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Input number 1is different because it must be connec-
ted; otherwise the gate will not operate.
only input 1 is connected, the gate will act as an in-

However, if

verter if its complemented output is used.

The program symbol for the gate is

where the input numbers are shown.

The truthtables below will clarify the operation of the

or

(NORMAL)

(INVERTED)

gate.
INPUTS NORMAL INVERTED
1 2 3 OUTPUT OUTPUT
none any any 0 1
INPUTS NORMAL INVERTED
1 2 3 OUTPUT OUTPUT
0 none none 0 1
1 none none 1 0
INPUTS NORMAL INVERTED
1 2 3 OUTPUT OUTPUT
0 0 none 0 1
0 1 0 1
1 0 0 1
1 1 1 0
INPUTS NORMAL INVERTED
1 2 3 OUTPUT OUTPUT
0 none O 0 1
0 1 0 1
1 0 0 1
1 1 1 0
INPUTS NORMAL INVERTED
1 2 3 OuUTPUT OUTPUT
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0
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The gate is shown on the patchboard as

/ - LIGHT

The true state response to inputs 1 and 2 is delayed
by 50 usec, while input 3 is not. As will be seen in
Chapter 9, covering logic applications, this permits
the gates to be used in connection with flip-flops to
form a shift register. Also, this feature frequently
obviates the necessity of using one-shots for delays
in a logic program.

Each gate has three inputs on the patchboard. If the
logical product of more thanthree variables is desired,
the additional elements can be connected in through
externally patched diodes, as shown below.

L
o]
2—-—-@—
® 3
L3 ©
L
4_g 4.@
L5
©

The additional elements can be connected to any of the
three patchboard inputs, except number 1.

The gate can also be usedfor pulse-shaping. It is ON
(logical 1 atthe output) when no input voltage is greater
than 4 volts and OFF when any input is greater than
6.5 volts. When the net input is between 4 and 6.5
volts, the output corresponds to the last state of the gate.

GATE-DRIVER

This is a special element found in the TIME/EVENT
CONTROL MODULE. It isapower buffered, logically
inverted AND gate which performs the combined func-
tion of an AND gate and driver. The program symbol
is

ST
-

L3

€o

where Lj, L3 and Lgj and e, are respectively logical
input variables and the output voltage. This gate is
the same in logical operation as the AND gate except
there is no delay introduced at any input. When Lj-
Lg-Lg = 1, the output of the gate is 28 volts; other-
wise it is zero.



The primary use of this gate is for implementing ana-
log mode control changes based on logic outputs. For
example, in this way a multiple decade counter can be
used either to stop the analog computer after a pre-
scribed number of runs or in conjunction with a clock
to specify precisely the length of time the analog com-
puter is in one of several modes. This is accomplished
by patching the output of a gate-driver to either the C,
R or H inputs on the patchboard.

DECADE COUNTING UNIT (DCU)

The DCU is either a decade divider or a decade counter.
It contains ten internal binary states which correspond
tointegersfrom 0to9. Note that this is different than
a binary counter which counts in the binary number
system. There are two types of DCU's in the comput-
er. Both of these are in the TIME/EVENT CONTROL
MODULE (also referred to as Counter Module). One
has all the integer binary states available as a "'ten
line" output. This element is called a decade counter.
A status light is associated with each of the integer
binary states. The othertype has only the decade out-
put available and is called a decade divider.

There are two master resets for eachgroup of 3 decade
counters together with 3 decade dividers. These are
the OV and +V terminals. The OV input is directly
coupledtothe clock. As longas alogical one is applied
to this terminal the clock will be stopped. A state
change from zero to one will cause all the counters
and dividers to be reset. As long as a logical one is
maintained at this terminal, all other reset signals are

A state change from logical 1 to 0 at the +V terminal
will cause all the counters and dividers to be reset.
(This is called a trailing edge trigger.) The +V input
does not inhibit other reset signals, and it does not
turn off the clock.

All counter or divider inputs (including reset inputs)
require a change from a logical 0 to a logical 1 for
operation. Thus, the application of a logical 1 to an
input will cause it to operate once. It will not operate
again until the logical one is removed and reapplied.
This is true alsofor the master resets for each count-
er/divider group.

The program symbol for the decade counter is

(o]

N

;.o.___

The counter outputs are the ten integer counts from 0
to 9. Whenever a logical 1is applied to the reset ter-
minal, the counter will return to count 0. Whenever
a logical 1 is applied to the input terminal, the counter
will advance to the next higher count. The counter is
cyclic: when it is in count 9 and receives an input
pulse, it returns to count 0.

Note that the counters can be used in series. This is
accomplished by connecting any output from the first
counter to the input of the second counter. Then, when-
ever thetransitionfrom alogical 0 to alogical 1occurs
at the output of the first counter, this transition from
0 to 1 is applied to the input of the second counter.
This causes the second counter to advance one count.
Normally, the second counter receives its input from
the "0" digitof thefirst. Then, whenatransition from
count 0 to count 1 occurs in thefirst counter, the out-
put from count 0 goes from a logical 1 to a logical 0
and the second counter will not be advanced in count:
its inputis activated only with alogical changeof state
from zero to one. Note that when the first counter
goes from count 9 to count 0, then the count 0 output
goes from 0 to 1, and the second counter is advanced.

The program symbol for the decade divider is

DIVIDER

v —our

The divider has ten internal integer counts inthe same
way as the counter. However, these are not available
as logical outputs. An input to the reset terminal will
cause the divider to return to count 0 internally. The
output will only return to state 0 if itis in state 1. Ifthe
logical variable applied to the input terminal changes
state from 0 to 1, then the divider will count inter-
nally. The divider is cyclic: count 0 follows count 9.

With a sequence of input pulses, the output is alogical
1 except when the internal counter is in count 8 or count
9. Thus, when the internal transition from count 9 to
count 0 occurs, there is a transition from a logical 0
to 1 at the output which can be used as input to other
logic elements. However, it should be remembered
that if the divider is reset during the time when inter-
nally it is in count 8 or count 9, the transition from 0
to 1 will occur at the output then.

CLOCK

Each TIME/EVENT CONTROL MODULE provides a
1000 cycle clock output at the patchboard.
Maintaining a logical 1 at the OV master reset termi-
nal will stop the clock.

The program symbol for the clock is

(o—

The logical cycle of the clock is repetitively a logical
1 for 800 u sec and logical 0 for 200 p sec.




FLIP-FLOP

A flip-flop (FF) is a one-bit memory. It has a set (S)
and a reset (R) state. The set state corresponds
to true (logical 1) and the reset state to false. The
program symbol is

-

There is a status light connected to the S output so
that when the FF is in the S state the light will be on.
The FF can be placed in the Sstate by applying a logi-
cal 1 to the S input. It can be placed in the R state by
applying a logical 1 to the R input. Applying a logical
state change from 0 to 1 to the T input will cause the
FFtochange to the opposite state. The flip-flop R and
S inputs are direct-coupled. Each can be a-c coupled
by inserting a 200 pF capacitor in series with the input
sothat these inputs will be activated by only logic state
changes from 0 to 1 and not by logic levels.

Internally, the application of a logical 1 to the S input
turns off the R output, and a logical 1 at the R input
turns off the S output. The R and S inputs are level
sensitive in contrast to the T input which is activated
by state changes. Consequently, if a logical 1 is ap-
plied to both the R and S inputs simultaneously, both
the R and S outputs will be a logical 0, and a state
change at the T input will have no effect on the state of
the FF. If both R and S inputs are a logical 1 and then
both are changed to a logical 0 simultaneously, the
final state of the FF will be either R or S with nearly
equal probability. If the change to 0 does not occur
simultaneously, the input which sees the logical 1last
will control the state of the FF.
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If either the Ror Sinput is energized by a logical 1 and
if a pulse or logical variable state change is applied to
the T input during this time, the FF will act like a one-
shot mono-stable multivibrator. Thatis, it will make
a transition to the opposite state for about 5 ¢ sec.

Two master reset terminals are located at the patch-
board for each FF module. One will put all the FFs
in the R state for a transition from 0 to 1. The other
reset is level sensitive. As long as a logical one is
applied allthe FFs are constrained to be in the R state.

COMPUTER CONTROL LOGIC OUTPUTS

The analog control logic outputs in the integrator mod-
ule must not be used as an input to any logic element
except a gate. Therefore, special F-RT and R-H out-
puts are located in the FF and gate modules. These
can be used as an input to all of the logical elements.
They are identified as F-RT' and R-H'. The logic
levels for both F-RT' and R-H' are consistent with the
digital logic elements. There is a logical inversion
between F-RT and F-RT' as well as R-H and R-H'.
For example, when F-RT' is connected to a flip-flop
R input, the flip-flop will be in the reset state when
The F-RT bus is energized. When the F-RT bus is
de-energized the FF is free to respond to signals at
its T and S inputs.

The F-RT and R-H busses are logical complements,
which is the reason for their selection in logic control.

LOGIC SWITCH

There is a manual logic switch in the counter module
which is convenient for single-stepping programs. The
output of this logic switch (ungrounded terminal) can-
not be connectedto any other logic output. The reason
for this is because the output of the logic switch is
shunted internally by a large capacitor. Consequently,
if this element is connected to another logical output
it will cause degradation of the rise-time of that ele-
ment.



CHAPTER 9
CIRCUITS FOR SIMPLE LOGICAL FUNCTIONS

Several fundamental circuits which are used frequently
for logical programming are presented below. In all
cases the trigger is a negative-going voltage.

ONE-SHOT

A one-shot circuit will produce a logical pulse of pre-
determined length whenever its input is triggered.
That is, before the trigger, its output willbe a logical
zero. When the trigger occurs its output changes to
a logical one for a fixedtime interval. A one-shot can
be constructed with logic elements in several ways.

5 usec:

The circuit below will provide a 5 usec logical pulse
when triggered.

— Lo

If a second trigger occurs during the pulse, then the
pulse will last for 5 usec after the second trigger. In
other words, after the one-shot is turned on by the
trigger, it will stay on until 5 usec after the last pulse.
The sensitivity to multiple triggering canbe eliminated
with a gate:

—Lo

The logical pulse from this circuit will be delayed 50
usec due to the delayed input of the gate used for Ll‘

50 usec:

The circuit below will provide a 50 usec pulse when
triggered.

This is due to the 50 usec delay at input 1 of the gate.
Its behavior for multiple triggering is the same as for
the 5 usec one-shot.

Variable:

Lo

»w -
[ ]

This one-shot will produce a logical pulse of fixed
duration. Thepulse duration depends on the choice
of R, C. Itsbehavior for multiple triggering is some-
times erratic. The sensitivity to multiple triggering
can be eliminated by gating.

|n+l

IN
COUNTER
R

This one-shot will produce a logical pulse whose dur-
ation is determinedby both the clock frequency and the
output line number from the counter. The pulse dura-
tion for the circuit shown is n times the clock period.
Obviously several dividers may be inserted in series
with the clock if desired and several counters may be
used. This circuit is insensitive to multiple triggering.

HALF-ADDER

A half-adder is acircuit for implementing an exclusive
sum, @ :

LI (o]
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Although digital inverters are shown in this circuit,
they are not usually necessary because all logical ele-
ments except for the counters have both complemented
and non-complemented outputs.

SHIFT REGISTER

A shift register is a binary register which is shifted
one bit each time a trigger is applied. The triggered
half-adder is needed for this circuit shown at right.

If Li® L2 =1, then whenever a trigger, T, is ap-
plied, Lg will be a logical pulse whose length is equal
to the duration of T. Note that T is applied to input 3.

If the duration is less than 50 psec then changes of Lj,

Lo after the application of T will have no influence on
Lo due to the built-in delay for gate inputs 1 and 2.

The circuit for a shift register is

FF2 FF3

Notice that the inverters for the triggered half-adder
are not required since complemented inputs are avail-
able. Aninitial setting for this register can be entered
by resetting the flip-flops individually, or with the com-
mon reset, and subsequently gating a logical one into
each S input as required. This circuitry is not shown
because it requires little explanation. Whenever a
trigger, T, is applied which is less than 50 psec (a5
usec one-shot is a convenient source) the following
state transfers will be made

L, —FF1

FF, —FF2

FF —FFn
n-

9-2

Thus, when each trigger occurs, the current value of
Lj is entered intothe first flip-flop. The last flip-flop
can be connected to the first flip-flop, instead of Ly,
to obtain a register with an end-around shift.

UP-COUNTER (BINARY)

The circuit for the binary up-counter is (shown for
three bits)

FFI FF2 FF3
R R

Ly T T T
s s s



The counter is initialized with the common reset. Al- Number of
ternatively, an initial value canbe entered in the same FF NUMBER State Changes
manner as for the shift register. This circuit is acti- 3 2 1 for Ly

vated by a logically positive change of state. It will S
count the number of positive changes of state in the

binary system. Each time FF n-1 returns to the R 0 1 1 3
state, the state of FF, is changed. The table below 1 0 0 4
shows the states of the FF's for successive logically
positive changes of state of L. 1 0 1 5
1 1 0 6
Number of 1 1 1 7
FF NUMBER State Changes
3 2 1 for L, 0 o0 0 8
0 0 0 DOWN-COUNTER (BINARY)
The circuit for the binary down-counter is (shown for
0 2 three bits)
FFI FF2 FF3
R
Ly T T
> Y, S
INITIALIZE - ——
2% bit 2" bit 2% it
\ N -
INITIAL VALUE

This circuit is activated in the same way as the up-
counter. The table below shows how it counts. (It is
assumed that the initial value is the binary number 111.)

FF NUMBER INPUT
3 2 1 STATE CHANGES

H O O O O M = =
- O O e OO
- O R O RO MO M
W =3 A G B W N = O




TIME INTERVAL MEASUREMENTS USING DIGITAL

- LOGIC

The digital logic modules, which are part of the Systron-
Donner Analog Computer complement, can be used to
obtain measurements of time intervals with a resolution
of up to one millisecond. The overall timing accuracy
depends on the number of digits displayed. It can be
as good as .01%, which is a significant improvement
over the typical 3% accuracy obtained through the use
of an oscilloscope. Also, this particular capability
of using digital logic modules to make accurate time
interval measurements can eliminate the need for a
frequency counter, which is generally an extra cost
accessory.

The basic time interval measuring program is given
in Figure 1A, and the timing relationships are shown
in Figure 2. This program measures the duration of
a logic signal, L. Initially, all flip-flops and DCUs
(Decimal Counting Units) are inthe Reset state. When,
and only when L changes from 0 to 1, Flip-Flop 1 is
toggled into the Set condition. Gate 3 is opened and
the clock timing signals are sent to the Time Interval
Indicator. This is a cascade of DCUs of sufficient
quantity to measure the total time interval. At the end
of the time interval being measured, L returns to the
0 state. L from the inverted output of Gate 1 resets
F-F1. F-F1, in turn, toggles F-F2 into the Set state
and turns off Gate 1. The Time Interval DCUs stop
counting and hold the elapsed time display. The Set
output of F-F2 inhibits the output of Gate 2 through
Diode 1, preventing any further changes in L from
toggling F-F1, F-F2's Set output also opens Gate 4,
and clock signals are sent into the Display Time DCUs.

The Display Time Generator is also a cascade of DCUs.
Outputs from the Display Time Generator are logically
summed in Gate 5. When the count reaches the value
corresponding to the desired display time, Gate 5 is
changed to the 1 state and toggles F-F3. F-F3 is
connected as a5 microsecond one-shot. That is, F-F3
goes into the Set state for 5 microseconds before
returning to the Reset state. The Set output of F-F3
resets all flip-flops and DCUs, and the circuit is ready
to measure another time interval. The automatic
Display Time Generator can be dispensed with, and
the system can be manually reset by using the logic
switch on the clock module (Model 3328).

If L changes state before the end of the display time,
nothing happens due to the Inhibiting action of F-F2 and
D1. If the reset action at the end of the display time
occurs while L is in the 1 state, the system remains
in Reset. Interval measurement will not commence
again until L changes from 0 to 1. This is illustrated
in the Timing Sequence diagram, 3rd interval time.

To summarize, this program takes no action until L
changes from 0 to 1. It then measures the current
time interval, holds the display until automatically or
manually reset, and then waits for the next state change
from Oto 1in L.

An alternate program is shown in Figure 1B for meas-
uring the time interval between two independent logic
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signals. L, initiates the timing action. Gate 2 acts
as a buffer so that Ly is not affected by the inhibiting
action through D1. Lj terminates the time interval
when it goes into the 1state. The interval terminates
at that time independently of the state of L,. If Ly
causes trouble by being in the 1 state during part of the
interval to be timed, it can be connectedto a one-shot
similar to F-F3 and then into the Reset input of F-F1.

The program of Figure 3 allows measuring of the Nth
time interval after reset. Itisidenticaltotheprogram
of Figure 1 except that a pre-set event counter is in-
serted between L and the toggle input of F~-F1. The
event counter can be made of DCUs, or a cascade of
flip-flops.

The period of N intervals can also be measured, by
inserting the pre-set circuit between L and the Reset
input of F-F1. This is useful for measuring equal-
period intervals with an effective resolution of 1/N
milliseconds, or for averaging readings over several
cycles.

Figure 4 shows how to convert analog signals to logic
levels. The logic gates can be operated from analog
inputs; the output will conform to logic states. How-
ever, the gates have hysteresis. That is, the gate is
off for inputs greater than about +8 volts. Once opened,
the gate will not turn on until the input becomes less
than about +4 volts. Negative inputs to the gates cause
no action. Also, the gates are not damaged by input
voltages within the +100 volt computing range.

Gate B is turned on at the start of the time interval
period, thereby toggling F-F A into the Set state.
Gate B turns off during the interval, but this has no
effect on F-F A. When Gate B turns on again, F-F A
resumes its Reset state and the timing is terminated.

Figure 5 indicates the method used to convert inte-
grator mode logic bus signals to logic levels. Gate
input 1 must be grounded or connected to a logical 1.
When the mode bus is energized, it turns the gate off.
L then is taken from the inverted output of the gate
since this is a logical 1 when the mode logic bus is
energized.

Display of the less significant digits of a time interval
(when the more significant digits are known), can
appear on the Model 3328 which allows only a 3-digit
display. A 3-digitdisplay of the less significant digits
will suffice when the more significant digits are known.
For example, to read an 11 second interval to a reso-
lution of 1 millisecond requires a 5-digit display. If
the first two digits are already known, the last 3 can
be indicated on the clock. The counters are cyclic,
so overflows of the more significant-digit counters do
not affect the count in the less significant digits.

As another example, the periodof alradian per second
sine wave can be measured to 1 millisecond resolution,
and . 015% accuracy, without displaying the most signif-
icant digit since the period is knowntobe 6. + seconds.
The display would indicate the .283 part of the 6.283
second period.
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MASTER RESET

AND
DCU OV RESET

Figure 1B. Alternate for Interval Between Two Logical Events




|
0 | !'J L L
[ | I [ | :
COUNT ! '
DISPLAY LL_ !|_| ] I TIME
RESET Lo | — INTERVAL
DISPLAY Lo P INDICATOR
TIME Lo ! Lo
COUNT I
DISPLAY
RESET [ [ ' TIME
INTERVAL INTERVAL INTERVAL INTERVAL GENE 0
1 2 3 4
Figure 2. Timing Sequence
TI
S
L —e
——————————— —_
. ]
| DCU'S OR
P N — >
| & L/ |
L.___PRESETTO N __ _
Figure 3. Alternate To Measure Nth Interval After Reset

Figure 5.
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> [ 1.

L~ L/ s L

ANALOG Sp MIN.< +4 VOLTS
SIGNAL, S,

Sa MAX.>+8 VOLTS

Figure 4. Program to Convert Analog Signal to Logic Signal

(LOGICAL 1) |
T
INTEGRATOR = c
MODE LOGIC D—1L
BUS (+28 V) ll

Program to Convert Integrator Mode Logic (+28V) Bus to Logic Signal



CHAPTER 10
CIRCUITS FOR SIMPLE LINEAR AND NON-LINEAR FUNCTIONS

Several simple operations are used frequently for pro-
gramming. They include division by a constant, dif-
ferentiation, time delay, and a variety of sectionally
linear trapsfer functions. These are described below.
(It should be remembered that all electronic switches
in this section must be used asiJ inputs in series with
the input resistor. )

DIVISION BY A CONSTANT

The circuit

IM
| —~VWh——

0.IM

ez—/\/\/‘_‘b

The symbol

el eo
€2

satisfies the condition

ag, + ey + 1Oe2 = 0.

(The input gain labels are usually omitted if they are
unity.) The transfer function is

This circuit is useful for dividing a sum of variables
by the same constant, ¢. Sometimes it is more con-
venient to set a pot to @, if ois a natural parameter
intheprogram. Otherwise the pot would be put between
the amplifier output and the following input and would
require the calculation of «~1 for each new setting.

This configuration is alsouseful for obtaining gains ot
greater than 10 without requiring more inputresistors
or more amplifiers.

DIFFERENTIA TION

Programs are usually written to avoid differentiation.
This is done because differentiation inherently stresses
noise and because the circuits used may lead to insta-
bility. However, in some instances it is difficult to
avoid forming derivatives. This is especially true for
on-line data processing or editing applications. For
this reason, it is helpful to be familiar with available
differentiation techniques.

A single amplifier program which can be used is

R
o MA
C
e —“-‘/YWA[ > Leo

which has the transfer functicn

r is usually about 10K plroducing reduced gain at fre-
quencies above (2rrC)™* cps. Since C is generally
large, the circuit tends to load unduly the preceding
computer element. Also, a large C may lead to sta-
bility problems in the amplifier driving the differenti-
ator. The smallresistor, r, helps prevent drive cir-
cuit instability.

The more sophisticated program

ka

Ky
e -8
! | )=2e 2 eo
-
c ®
a
has the transfer function
S0 _s 1+ Ts
. K [<1-a ﬂs
KKy
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where T = CRj,, Rin, the input resistance at e, is
usually 1 M@. Thus, expressing C in microfarads
T (sec.) = C(uf).

Ideally,

a=1 - KIK‘ZC

butin practicex isadjusted to a slightly different value
due to amplifier and potentiometer phase shift. The'
error of the circuitis strongly dependent on o causing
its setting to be critical. C must be selected so that

o is large but not close to unity. This is due to the
stability of the loop composed of amplifiers 1 and 2,
and pot 3. A good choice for C is

0.3
C = —2
KiKs
The circuit will give good performance for 10= K1Kg
=1006. Thelower limit is necessary in order to limit

the size of C and thus avoid stability problems. It fol-
lows that the setting fora is roughly 0. 7.

The test circuit for adjusting «is (the block denotes
the differentiator circuit),

DIFFERENTIATOR

OSCILLATOR

+S

Ky K2

Knk'a’\
L~

ERROR

The oscillator is set to the highest frequency of interest
and is adjusted until the error is minimum, using a
scope. In practice «>0.7.

An excellent low-frequency differentiation circuit is

0.01

e
_ -Kls Z.ls + 1
+ .01s + K2

.001s

10-2

This circuit works well for

K
1=t

= 100. If desired,
K

pot 1 can be adjusted precisely with the previous test
circuit, in which the integrator input is set to

Ko

K,

TIME DELAY (Continuous)

Sometimes a program for time delay is needed for
solving a problem. The time-domain definition of time
delay is

eo(t) = e (t-T).

This has the transfer function

eo_ -sT
— = e .

1

There is no convenient way of generating a continuous
time delay withonly analog computer elements. How-



ever, various approximations can be made; most of which are due to Padé. The simplest (first order) is

e 1 -
9 -

€1 1 4

0

VI
w

which works reasonably well for a delay of ¢=0.6 where ¢ is expressed in radians. Since ¢=wT, where w is the
frequency,

r= 00
w

That is, at very low frequencies, the approximation will provide relatively large time delays with reasonable
accuracy. The program is

e '

2

/)
2

T

In practice, the highest significant frequency in the simulation is estimated in order to determine an upper
bound for T.

A second-order approximation which is reasonably accurate for ¢ <1.8 is

Ts‘LTzs2

-0 _ 2 12
= T Ts  T252 °
e Ts Tés
11+ 5=+ "5

o
-
i

The program is

VY

A A
N\ -/

i
~N

A fourth-order approximation which is reasonably accurate for ¢ =< 7.5 is

1 3 2 1 3 1 4
eo _ 1- E(TS) + ﬁ(TS) - 84(TS) + 1680(TS)
o 1.1 3 13 . 1 4
°1 1+ 3(Ts) + 55(T8) + 54(Ts)° + 1ggp(Ts)
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The program is

el $ . 4 P \ 4
_ 10 o
1072 ().536 C).lzo C).I35
LN L 1
T 10 T 10 T

I > ( T) [
1072 CP.SBG CP.IZO <>.I35

3l
OL

DEAD-ZONE 1

The dead-zone operation relates e €, by the sectionally linear function

slope = —m

The analog program is

+00

e| i—{> \/3} eo

-100

1 In the following circuits note that mode relays and electronic switches are operated by logical zeroes. The

circuits have been shown with electronic switches for mode control. Function relays can be used instead of
electronic switches, if high-speed operation is not required.
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Pot 1 is set so that its diode will not conduct until ey za. Pot 2 is set so that its diode will not conduct until \

e = -b. Thus, for -b = ey =3 neither diode will conduct and e, = 0. Also if pot 3 is set so the total gain is m

then

(]
|

= -m(e1 - a), e;=a
=0 , “b= e;=a

= -m (e1 + b), eIS-b.

Note that pot 3 cannot be set to m exactly, since the source impedance due to the pot-diode networks is not zero.
If digital logic is used, the program is

ELECTRONIC
SWITCHES

©
-

: A —{ > 1—
| [
U, ES;
ma_
100 Y
\ |
-|oo—@ AAN/ JN.%S —AMV
uz_\/ 2
mb_
100
|
+00—(3 AAN /N.O\.
_ \ES3 DEAD ZONE
Us ‘e
o
K(slope)
L, . 0 o
OU2 -b L]}
Cl
T
Y
| N.O. =Normally Open
L oUsy y oP when U=0
2 N.C.=Normally Closed
me, L1 L1 Loy U1 U2 U3 ES1 ES2 ES3 e,
-mb < me; < ma 0 1 1 1 0 1 (0] (0] o 0
+, >ma 1 0 1 0 1 1 C C 0 -m(e1 - a)
-, < =mb 0 1 0 0 0 0 C (0] C -m(e1 +b)
Pots 2 and 3 are used to set the breakpoints for the ES1 is open when fi = L2 = 1, which is equivalent to

functions. Their outputs are used both to set the com-
parator references and to provide a biased input to the
amplifier as required. The amplifier output will be
zero when all three switches are open. Logical vari-

ables Ll’ L2 are defined by

-b selsa.

Since pot 1 is set to m, ey will have the desired func-

L, = sgn (e, - a) (output of C1) tional relationship to e,. Normally closed and nor-
mally open contacts of the electronic switches are used
L, = sgn (e1 +b) (output of C2) to provide the logic level inversion required.




‘SATURATION The analog program is

The saturation function is

+100
€o
m J
b 1 -m e' G / f eo
€
-a
-100

Pots 1 and 2 are set to limit at -a and b respectively. This circuit gives a "soft" limit.
remain constant at the saturation level, but continues to increas
resistance when the diodes are conducting.

That is, ey does not
e with increasing e; due to the non-zero feedback

The program with digital logic is

m
I SATURATION
e, O —o— AN :ﬁ’ss FUNCTION
o] Ul !
100
|
+100 A @s e
b Uz — 2
100
I /\ | €o
-IOO—O f AN NC. A ﬁ
Us N\ ES3 .
-m slope
+02
-a
L
i —ous
cl
()
U
c2 —oUp
L2
e L, L 1L, U U, U, ES; ES, ES, e,
b a
-El < e]. < E 0 1 1 1 1 C (@) (0] -mel
+, e -2 0 1 0 0 0 0 o) C o -a
m
b
) o< o 1 0 1 0 1 1 o o c b
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The operation of the electronic switches is governed by The analog program is
the logical equations

- I b _ - a
ES; = LirLy (m =€ = m)
- a
ESy = Ly (6 =3
- )
ES; = L, (e1 = m)

The normally closed or open contacts of the electronic
switches are usedto provide the logic level inversions
where required. The logic program will provide hard-
limiting;i.e., the slope after saturation will be zero.
This is not true for the purely analog program.

BINARY (bang-bang)

The binary function is

Pots 1 and 2 are set to limit at -a and b respectively.
As in the "soft" saturation function, the output in the
-0 limiting region has a non-zero slope.

The program with logic is
-100

€o
100 +100 ~~ C

a+b
100

The NC (normally closed) contacts of the switch are used.
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ABSOLUTE VALUE (variable slope) €o

-m
The absolute value function with variable slope is 2 m,
g
The analog program is —i—
1 J
3 (ma+m))
I\ NS .
N\ °
¢ —¢
m2
The program with logic is
(M2
_l_ N
° lz(m +m) €

BACKLASH L
The backlash function is b
-m
i < \o e,
\7 .
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The analog program is

+100

-100

o

Pot 3 is set to -&1- where m is the desired slope. Pots
1 and 2 are set to limit at -b and a respectively. The
limiting network and amplifier 3 comprise a dead-zone
circuit whose output is an integrator rather than a sum-
mer. Integrator drift will be about 50uv/sec/pfd, so
it is necessaryto consider two factors when selecting
the integrator capacitor:

1 - Sufficiently small IC time constantto permit
adequate tracking

2 - Sufficiently large C to ensure that the inte-
grator drift is permissible.

The logic program for this function is obtained by re-
placing the analog dead-zone circuit with the equivalent
logic program.

BISTABLE FLIP-FLOP

The bistable flip-flop function is

eo es
< a
Y ) .
-c c & \
> -a
The analog program is DITHER
The dither function is
e, e,
BANG —-BANG eg e
o

Pot 1 adjusts the value of e which results in a change
of state, namely C.




The analog program is

BANG —BANG >

A
100 /7 \

[

+100 (-

In the bang-bang circuit the limits are set to A, -A. The logic program is

+100
AESi A
-100 VVAA- 100

+100 V\ANA— N. -
V ES> .

In both the analog and the logic programs, the gain of integrator 1 determines the dither frequency.
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CHAPTER 11
SIMULATION OF CONSTANT COEFFICIENT TRANSFER FUNCTIONS

The simulation of control systems requires programs
for constant coefficient transfer functions of the type

T(s) = %%)

where P, Q, have polynomial form:
n i m j
P(s) = Zais , Q(s) E bjs .
i=0 j=0

Ifn > mdifferentiation is implied. Differentiators are
treated in Chapter 10, Here, it is assumed that n < m.
For physically realizable systems the aj, bj are all
real numbers. It is well known that any polynomial
with real coefficients can be represented as a product
of quadratic factors. Further, in manypractical
problems the physical model is composed of dominant
second or first order transfer functions. For these
reasons only cases for which m < 2 are considered.
Programs for specific higher order transfer functions
can be derived easily with the approach outlined in
Chapter 3. The material here is intended to comprise
a dictionary for second or first order programs. With
this information, generatinga program for a complex
system diagram with many blocks is easy. The pro-
gram is written for each block and the system is rep-
resented by making appropriate interconnections be-
tween blocks.

In developing transfer functions using only pots, am-
plifiers, and integrators, the following fundamental
characteristics of feedback or closed-loop systems
are of interest.

General Closed-Loop System

—"@— SUMMING POINT SYMBOL
+

+
Ey G(s) Eo
+

H{(s)

The transfer function of this system is

where G(s) is the forward path transfer function and
H(s) is the feedback path transfer function.

E2

L

E | Gy(s) Gals) Eo

H(s)

The transfer functions of this system are

Bo GG
El l—HGle

E G

_oz_z__l_(_Eg)
E, 1-HG G, - G; \'E,

That is, the response to inputs other than Ej is equal
to the normal response divided by the transfer function
preceding the actual input.

Specific transfer function programs are given below.

T(s) = a:
fl———O—
a
T(s) =—;
: >
o - i
Ey
a




T(s)

as +1°

T(s) = sfa

T(s) = 22,

T(s) = $5g°
a>B
a<B

y

T = —y——

(S) s2 + as +8
B>0

11-2

|
E a Eo -I
‘—I_U>_O—F'E°E’asn
B
Ey Eo, B
°E| S+a
a
B
El .Eg=-Bs
0 E, S+a
a
N E
E| __9=st
—I G—BI/ Fo E) StB
W
) Ay
B
E| _E_9=-sla_
| B-a [‘D fo E, TSR
Y\
U/
B
Y
J_(g vB
Eo
O E=T(S)
® B




T(s) = 3 : y
s"+ as+f 8=0 E, [l> .
- 0o
----- (2)
—=T(s)
. |
>y
a
X
/B
B<0 Ej——D— v-B :
o
----- (3)
E
E°=‘r(s)
a ~ '
N
B

For o, 8 > 0, az > 4B, another program is preferable.
Let 6 = &, A2 - 52 -8. Then

T(s) = (s + 6 + A)y(s + 5 =A)

and the program is

S+A S—A\

The program for this function uses types (1), (2), &

(3) of T(s) =2—7—, shown above, with the
s+ as +8
addition of two pots andone or two summers. In each

of (1), (2), (3), pot 1is set with y=1



E
>—Eo £o=Tis)

E
Eo é =T(s)

E
>—Eo E—? =T(s)

————— B
B>o r | }I»_
! Ib I P4
| : A
|
|
E|—= —@ !
|
|
|
|
I P e
am_ T J ¥
Ny i
o
T
E— ©), :
| |
' :
| ||>' |>—O_
wa______ J y
_______ KB
B<0 {' _I —
| _”>".——O-—
| |
| |
E — @ :
: :
o DT
| | v
3 J i3

2
() - Sy ps Y

s + as + B

For convenience T(s) is simplified

T(e) - 1 + W -+ (-p)
s + as + 8

and the programs are (where againextra circuitry has
been addedto (1), (2), (3) above andin each pot 1 is set
with ¥ = 1).



l/

r———"—_ "1

(p-aWEB

e
9,
)
9,
v-B

I
]
|
|
|
|
|
|
|
J

@

T(s)

—zT(s)

Eo

1
|

F-—————=
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CHAPTER 12
CONTROL SYSTEM SIMULATION

A modelof a control system is usually represented by 1 - derive a program for each block
a block diagram The block diagram contains constant

coefficient transfer functions, non-linearities, and 2 - interconnect the blocks.

frequently, special differential equations. The easiest This method is calledblock programming and is simple
way to generate the complete computer program for using information developed in Chapter 4. Some illus-
the model is to trative examples are shown below.
MODEL:
+ KS
R Cc
- S+a
!
S+8
-5 _. 1,
s+a’ “s+8°

PROGRAM:

R
::>~r-c
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- MODEL:

R+ + Ks c!
_($) m 2 vichi
s+ s+ |
s+
s+3
| /
/|
K
2 e )
s +s+1 ./
yd
N
s+1 .
-s+3’B>a' >
22 0
~ i0
0.3
)‘ ) ¢ +100
O—i¢
'\ /\
— ¢
L ~
O
®-100
12-2




J

Lo \/_/\

ABSOLUTE VALUE

CIRCUIT
PROGRAM:
7\
\J
0.3
10
10 )
C O —ie
2

A
~N »—0
~__ "] )|
L e—O
¢ -100

Note that no pot is required for the parameter, B, be-
cause this parameter is used to translate the dead-

zone function.
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CHAPTER 13
FUNDAMENTALS OF VECTOR ANALYSIS

The development of vector operators given below is
within the framework of Euclidean (x, y, or x, y, z)
space. Due to the invariance property of vectors and
vector operators under transformation to other coor-
dinate systems of engineering interest, itis reasonable
to proceed in this manner. Sometimes we will show
the representation of the vector operator under discus-
sion in other coordinate systems for the purpose of
illustration. Indeed, the main motivation for using
vector notation is its non-dependence on a particular
coordinate system.

DEFINITIONS
(A - B) is the scalar (dot) product of two vectors.
A - B =|A|-|B[Cos (A, B)

(A x B) is the vector (cross) product of two vectors.

If
C = AxB
then
Ic| = |Al- |B] sin (A, B).
Note that

(Cx(AxB)) =0
Vis called the vector operator del,

o) 9 o)

3x’ 8y oz
(Here ordered n-tuples are used instead of the cus-

s : . : 8 8 A3 .
tomary i j k unit vector notation, i.e. = oy frep!

+ 8—y ‘).
If = ¢ (%, y, z) is a scalar-valued function, then

_ 3 8¢ 8¢
Vo =3x oy oz

is a vector-valued function also known as grad ¢.
Vv has different forms in other coordinate systems.
Example: In cylindrical coordinates

9 1o 3

= ar’ rog 9z

For a vector V = Vx, Vy, Vz;

A aVz av_ oV av av v
vxvVvV = - —BY’ y

— - =2, X -
ay 2 ax Bx ay

o]
N

az
is a vector-valued function known as curl V.

2 2 2

2 9 d 9
V-V =V = — 4 = 4+ —
ax2 ay2 322

is known as the

Laplacian.

SUMMARY OF OPERATOR ALGEBRA (greek letters
are scalar-valued functions, capital letters are vec-
tor-valued functions)

v (aV) a(v-V) + V. (va)

vx @V) a(vxV) + (va) xV

v- (VxU) = U- (W&V) - V. (vU)

V(V-U) = Vx (vxU) + (V- V) U+Ux(WV) +

U-9wmv
vx(VxU)=U-9YYV-(V-)U-U((V-V) +
V(v- U)

vx (Va) = o

v. (vxV)=o0

Vx(VZA) = V(- A) - v2 A (this defines V>
which is not a true vector operation).

AxB = - BxA

A" (BxC) = (AxB) - C (triple scalar product)

DIFFERENTIAL OPERATIONS

The remainder of what follows will be derived for two
dimensions but may be readily extended to three.

Divergence:

If f (X, y) is a scalar-valued function then the family
f = c of curves in the plane are level lines for f. If
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f is thought of as a potential then these curves are
equipotential lines.

df:-aidx"-g

9x oy dy = 0

vi - (dx, dy) = 0

where (dx, dy) is a vector element of arc along the
curve f = ¢. (This is so because we constrain the
values of x, y so thatf = c). Thus we see that

vi 1 (dx, dy),

and the family of curves obtained from the differential
tangent field, Vf, are orthogonalto the family of level
lines and represent a flux (or flow). vf- N 4 gf—N is
calledthe directional derivative of f in the N direction
(N is a unit vector) at the point (x, y). The meaning
v oV
is obvious. Vv-V = a—x + a_'z is a scalar-valued
X

function known as the divergence of the vector-valued
function,V. It is commonly written as div V.

Consider a small rectangle in the x, y-plane

(x+h,y+k)

(x,y)

We think of V as a flux, and determine the net emer-
gence of flux from the rectangle,

Vy(x+§&,y +k)

T (x+h, y+k)

-Vx(x,y+L") «— —= Vx(x+h,y+0)

(x,y)

-Vy(x+£,y)

We have

Outflow = [Vx(x+h, y+¢) - Vx(x,y+§')] k

+ [Vy(x+£, yHK) - Vylx+e', y)] h

13-2

Outflux _ Vx& ¥+8) - V &, y+¢)
unit area h
VJ(X+§, y}:k) - Vy(X+§', y)

+

In the limit as h, k—= 0 we have

Outflux 8Vx

= —= +

unit area ~ ox

%’Li’g

= V-V =div V
Thus if ¢ is a conservative potential field

V-Ve¢ =Oo_rvz¢ =0

At a point x, y; V2 ¢ = 0 implies alocal *%"%® in the
case of incompressible flow. Note that with compres-
sible steady flow V2 ¢ =0, in general, without the
presence of sources or sinks. In transient physical
processes ¢ is a measure of the change of energy
from one form to another. For example, in heat trans-
fer processes heat is stored locally by the distributed
heat capacity of the medium in which the process occurs.
Thus, if T is the temperature at (x, y), the local con-
ductive heat transfer is k VT where k is the thermal
conductivity, and the local heat stored by the heat ca-
pacity of the medium is cAT where c is distributed
heat capacity. The loss of thermal flux (heat flow)
from the conductive process equals the heat flux re-
quired for heat storage and this time-varying relation-
ship is given by

., 2T
V:-kKVT = ¢ ot
or
VZT =§ g—tI =1K % (Diffusion
equation).

where K is the thermal diffusivity constant.

Inthe case ofthe small oscillations of auniform mem-
brane, if w(x, y) is defined to be deflection, then the
potential energy stored by deformation of the membrane
is a function of vw while the local kinetic energy of
motion due to the mass of the membrane is a function

of g%v. Thus the time-varying transfer of energy from
one state to the other is described by

2

b w (wave equation)

at2

<

€

]
OI\JIH

where ¢ is the wave propagation velocity.
Curl:

If we think of the vector-valued function, V, as a ve-
locity field, we can interpret curl V in a convenient



way. Consider the tangential velocity around the sides
of a small rectangle.

-Vx (x+§&,y+k)
{(x+h,y+k)

-Vy(x,y+L{") Vy(x+h,y+{)

{x,y) -
Vx(x+§,y)

circulation

The -
unit area

(spin) around the boundary is given by
Vy(x +h, y+¢) - Vy(x, y+¢')

h
Vex+ehy) - V(x+e, y+k)

k

+

In the limit as h, k=0 we have

. : Vv av
circulation, ., _ y _ X _ _
unit area (°PiD) = = 5y - vxV=curlV.

To visualize the result in three-dimensions, we think
of an infinitesimal paddle wheel located at the .point
(x, ¥, z). This paddle wheel is angularly oriented so
that its shaft has the greatest rate of spin. Using the

righthand rule, the shaft then points in the direction
of vxV and its angular velocity is proportional to the
magnitude of vxV.

If vxV = 0, V is said to be an irrotational field.
IV = vxA, V is said to be a solenoidal field.

= V. ¢ then V is irrotational. (vxVv-¢ = 0).
If V = vxAthen V has zero divergence (V- VxA = 0).

VECTOR TRANSFORMATION THEOREMS

Theor 1: (Divergence or Gauss theorem)

Let R be a region over which a vector valued function
v is defined, then (differentiability assumed)

fv~v=fv-N
R

oR

where n is aunit exterior normalto 8R (boundary of R).
Theor 2: (Stokes' theorem)
Let R be a 3-dimensional region over which a vector

valued function V is defined, and let o be a 2-dimen-
sional subregion of R, then (differentiability assumed)

fN-(VxV)=é/V-ds

where N is aunit positive (sense to be determined by 80)
normalto candds is a direction vector whichlies in 8o.







CHAPTER 14
PARTIAL DIFFERENTIAL EQUATIONS - PART 1

This section treats the class of partial differential
equations which can be represented

V:KV¢ = E¢, ¢= ¢(X1;“" xn: t)

where the operation, =, is defined by one of

o = 0 (Laplace equation)
6 = Kk (Poisson equation)
29 = ko (Helmholtz equation)
¢ = C(X);T¢ (Diffusion equation)

Ju
©
I

2
M(X)%Q (Wave equation)
ot

The analog computer is used to integrate Z¢, in other

words to generate E-l. This will be discussed before
considering the generation of V- K V¢. The block pro-
grams for these cases are

Laplace:
.001

- =¢

The high-gain amplifier forces Z¢ = 0 when connected
tothe remainder of theprogram. The capacitor is used
to reduce high-frequency gain which may result in
instability.

Poisson:

The high-gain amplifier ensures 5¢ - k = 0,

Helmholtz:

¢
001
N
K
-8

The capacitor is added toprevent algebraic loop insta-
bility.

Diffusion: (N is the time scale factor)

é
|
% C(x)N
-5 ¢

Wave: (N is the time scale factor)

é
S
M(x)N2
g ¢

With the blocks for =¢ available, all that remains is
to find how to represent V- Kv¢; the Laplacian of ¢.
The form of v will depend on the coordinate system
(seeChapter 13). To illustrate the concept we will
derive the Laplacian for one dimension first and then
develop it for both two-dimensional Euclidean and Rei-
mannian manifolds. The extension to three dimensions
will be obvious. For simplicity it will be assumed that
K is not a functionof time. For thecase where K is a
function of time, the pot setto Kis replaced by a multi-
plier.
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ONE DIMENSION
v- Kvp = g—[K(x) — olx, t)]

The derivatives will be replaced by finite differences:

Since

f(x +ax,t) - f(x,t)

— f(x, t) = lim o

AX—~+0

then, for small Ax

Ax _fx+ax, t) - f(x, t)

AX

f(x + 5=, t)

Adopting the notations

and

f(xn, t) = fn for any n

we have, for finite differences

(x2 + Xy, t
Af\—5—, ) f(xy, t) - fxg, t)
AX a X, - X

2 1
For any n
Xne1 Xy t x 1,1t
af - 2 Af\ ‘n+y’
AX = ' An =
Afn+% f(x t) f(x t)
ax Xn+1 "X
- fhe1” f
n+1 ~ %n
Thus
Mgy B - 9, 1)
Kve = K(x_.1)
[ ]xn 1 N+ X1 - xn
¢n+1 ¢n
=K 1
3 el T %y
Similarly
$n " %n-1
[de’]x 1 Kn-l “x - x
n-3 2 n n-1
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Using the same approximation

[KV"’] 1 -[Kve),
_ § .
(V- Kwg] = = 9,
n x 1-x 1
n+§ n-§

Therefore, by substituting the different equations pre-
viously obtained, we have

Kn+% [¢n+1 - ¢n] Kn-% [¢n - ¢n-1]

X1~ %5 n “n-1

The program which generates E«pn is

-¢ o +¢ ~Pn+l
B

n
®n
K |
n-— n+-2-
xn“xnl Xns1— X
A R
xn+J. x,,__

I X1~ X, = Ax, for all n, then the program reduces to

_¢n-—| ¢n _¢n+l

@ @ . ]

VATV
ONON®

Kn—l I(n-f'l
P o2 o _ M3, 1
1 ax > "2 Ax ’ "8 Ax *



Finally, we have the program for all five types of

equations above. Two are given below as examples.

Helmbholtz:
'¢n-l 4’:1 '¢n+|
1 .00l A Jl..oou 'r.OOI
— — —
kAX kAX kAX
X K
AX AX
Wave:
¢n ‘¢n+|

~Pn-i
1
M N2AX K
AX

S — —
MaN2AX K MaNZAX
AX

ONE-DIMENSIONAL BOUNDARY CONDITIONS

Boundary conditions of two types are commonly en-
countered:

g, t) = 1t) [Type 1]

K@) v¢ (@,t) = 1(t) [Type 2]

Sometimes both types are specified simultaneously as
a mixed boundary condition. These are approximated
by

¢, = (t), X, =a

Km% v¢n+% = 1(t), xm% = a

The programs are shown below for the Wave equation,
but are typical for all =¢.

Type 1:




Type 2:

M, NZAX

D]
AX

Mixed boundary conditions are represented by

n
—f,(n
—— Kne d
M, N2AX 2
AX
fa(t)
AX

This discussion can be extended to higher-dimension
cases by treating each of the boundary points in the
same fashion.
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TWO-DIMENSIONAL EUCLIDEAN MANIFOLD

A two-dimensional Euclidean manifold is commonly
called an X, y-coordinate system. Here

v Kvp = (a—, a—) . (K(x, y) =5

3¢
% 3y > Kx,y) 52 )

and

9 . 9¢ . 8 _ 8¢

et
= ~¢

oX ~ 9x a8y oy

v+ Ko

As for the one-dimensional case, finite difference
approximations are made for the derivatives: we will
adopt the notation

A
¢n,m - Q)(Xn’ ym)

Kn-«%, {¢n+1 m n m\ K 1 m ¢n, m-¢n—1,m

x ,1-x l\ X1 ) x +l x 1 *n"*n-1
g n73 My 03
K, m+1
T2 /n m+1~ n m
y “Ym
y 1-y 1\ m+1
mty "me3
K 1
_ 1, m=3 /¢n, m” %0, m-1 - =
y +1‘Y _l\ym-ym-l n,m
mty mTy
bi g X1~ % = AX, Y1~ Ym = Ay, for alln, m,
then the equation reduces to
Kn+%, Kn-%, m
AX (¢n+1, m" ¢n, m) TTAx (¢n- 1, m %, m)
K 1 K 1
n, m+3 n, m-3
* Ay (¢n, m+1-¢n, m) Ay (¢n, m-1" ¢n, m)

AX Ay‘E:qbn’ m



The program is

n,m+1

TWO-DIMENSIONAL RIEMANN MANIFOLD

Let the metric for the manifold be given by (ds = arc
length)

ds? = gij dxax .

In what follows we will use summation notation (i. e., we
sum on repeated indices).

g = |gij] = gjaGla (no sum on i)
sothat GY is the cofactor of g;;inthe determinant | g |
We define

Jiog!
a

Note that

It can be shown, that if ¢ is a scalar function,

2 1 9 ij a¢
v o =———(————) (Ve g 2%
Vg \ex! ox’

. 2 .
Thus, we have a general expression for V" ¢ in non-
orthogonal curvilinear coordinates. We couldtreat the
non-orthogonal case. However, thattreatment is much
more complicated than for the orthogonal coordinates.
Sincethe latter is of greater practical interest, we will
restrict our attention to




Thus, in three dimensions,

2 1,2 2,2 2
ds” = gll(dx )+ gzz(dx )"+ g33(dx3)

]
I

= 811822833

ii

1 .
—— (no sum on i)
ii
We denote

¢(x1, xJ, xk); x% = Aa’ a=i, j, k, Aa are constant

o %5k

Consider the diffusion equation
V. KVe¢ = E¢

We will need to replace the space derivatives with
finite differences.

1 o ij o
veKvp =—— —r (K\/g_g]—ﬁ. )
VE ox ax)

- =g K=K, x,x°

2 kveged 2% ) - vE =
ox)

X
Now
g = 0, i
Vg  VE22833

11
vee'! VB -

€11 \/"'g11

VE11833
VEa2
VE11822

VEs3

22
Vgg™ =

33
Vgg'" =

and

7 |
] A
L
- ) [
F 7|
w w
5 Ak

@
Rl
“§l
[
n
[
»

w

qﬁ
[
[

oﬁ
[
[
[
[©

+
@
béwloo
(%‘
[X)
w
@
B
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When approximated with finite differences

KvEaz VB33 a9

0 1
—_ —_— —> ——_T
E)x1 \/g11 axl Axl sz AX
[ax2ax®  [¥VEza VB33
. 1
l. Ax Ve i+1/2,k, j

e L me +
i+1,j,k 'i,j,k Ax1 \ \/El_l

- . ¢._ : -¢. s
i-—;',j,k i-1, j, k L, j, k

and similarly for the other terms. Let us consider
the one-dimensional projection to determine the sig-
nificance of these terms. From the definition of the

metric, clearly
Ax1 vV
€11
sz V
€22
Ax3 V
£33
X 1.2 .3 .. : .
are lengths in the x,x",x" directions respectively.

We denote these by 11, 12, 13 respectively. Ax1 AX
Ax3Vg_ is the volume V = 111213,

In general, the value of the lengths and the volume for

increments in xl, xz, x3 depends on location. The one-
dimensional projection of the problem is

11 i+;’j’k i+1,j,k "i,j,k
11 j=- ;’ j, k i-1,j,k "i,j,k




¢ DEFINED HERE

Thus, for example, we see that, in the Diffusion

equation
1215 1213k
and
1 D 1
1 1-—2-,],1{

1 ) i+1/2,j,k
are lumped conductivities defined at appropriate loca-

tions and Vi j kE is a lumped capacity, alsodefined at
rd

an appropriate location. The extension to the non-pro-
jected problem in three-dimensions is obvious. Itis
interesting to note that the theoretical result agrees
with our intuition. ’

ASYMMETRIC LATTICE

The set of space points over which the operator
v - Kvo

is definedis calleda lattice. In arbitrary regions one
cannot find a metric in any simple way. Thus, the ap-
proach developed for the Riemann manifold is not ap-
plicable. I aEuclideansystem isused, thenthe bound-
ary mustbe composed of a collection of orthogonal line
segments. This has two disadvantages: the lattice
density must be high on the boundary inorder torepre-
sent the boundary. The lattice density on the boundary
determines the lattice density in the interior of the
region, leading to an exorbitant equipment requirement
for the program. The asymmetric lattice representa-
tion of v - KV¢ will allow one to avoid both of these
difficulties.

Consider a lattice whose only restriction is that a set
of perpendiculars to the branches (one for each) can

¢ DEFINED HERE

e
z / X
COORDINATE

i+, j,k

(fzfs)i-t--'é-,j,k

(CROSS ~SECTIONAL AREA)

¢ DEFINED HERE

be found such that the perpendiculars in each polygon
enclosed by a hranch loop intersect at only one point.

Referring to the figure above,

1. Let a point function ¢ be defined over the .
lattice @

2. Consider one point of the lattice wherewe
arbitrarily choose ¢O and denote by ¢a the ¢'s

at branch connected neighbors
3. Define zi to be the length of the branch between

lattice points associated with bg Pe

4. Define r, to be the length of the _|_to £

r.
5. Define the symmetry ratio Yi = 1—1
i
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Now consider the representation of V2¢ at the lattice
point 0 given by

A Vi
0(s) =X E (¢ - 9g)
a

Where o is the index set of the neighbors. We will
choose the Y, and A suchas to minimize error. Now
for the contifuous nfedium (where we denote the loca-
tion of lattice point i by Sl) each ¢(Sl) is given in terms

of ¢(So) and the derivatives of ¢ at So by

o5 = ;) + T Lo 2oy, D0 gls)

= i 9x 1 oy
We have assigned a Cartesian metric to the domain so

that Ei is the pair (xi, yi). Thus the representation
O(¢o) is given by

21
Y X = (x, e, A
i n!
o n=1

or
g | ) )
L arlY & o vy 3y
n=1 o
Thus
0(g) = %Yi"i %0 * %Yiyi %0

1 2 1 2
+ 5 E:Yixi $xo T2 %Yiyi $yyo

+ gYixiyi ¢xy ot higher orderterms

Now we require
gY.x. = 0, ZYiyi =0 (1)

(1), above, is the x and y projection of }° Yili .
a

LY =¥
a x

Zri projected on X, y is zerosince thepolygonformed.
o

by the r, is closed. Thus, (1) is automatically satis-
fied. Evidently our choice of Yi was suitable.
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Define

2

-1 5 =i
x_Z‘aL:le _2 yi’BxyEY111

Then 0 can be expressed

0(¢,) = By $exo * By %yvo * Bxy %yo

+ higher order terms.

We want to reduce this to canonical form. The result
above is independent of an orthogonal transformation
on (X,y). Note that there exists an orthogonal trans-
formation suchthat Bxy = 0. Henceforth, without loss

of generality, we will assume Bxy 0.

Thus,

0(¢ ) = ¢+ higher order terms.

Bx Pxxo By yyo

By *B
06) = (Z5 D) (B0 * Fyy0)

ByctB
+ (—1)2 (Aexo

¢ v 0) + higher order terms.

We see that if Bx is significantly different in magnitude
from g , then 01s apoor approximation of Vz Thus

we requlre the polygon formed by the perpendiculars
to have relatively good symmetry properties. The
higher order terms can be reduced by increasing the
lattice density. One canget an intuitive feeling for the
symmetry properties of the polygon by observing that
the system has a physical interpretation in terms of
moments of inertia as shown below.




All that remains is to find the normalizing constant
Ao' We choose

+
A = Bi___%y
[o] 2
1 2 2, 1 2
Ao =—4-§Y1(xi +yi) B Zngli

Geometrically,

Interpretation:

I lij is a branch from ¢i to ¢]., then the lumped flux
from polygon i to polygon j corresponding to V¢ is

r.. .
-4 - = 1y it-
lij [qbi ¢j] so that Yij lij is a lumped admit

tance. Aj isthe area associated with lattice point j.

MacNeal, R.H., "An Asymmetrical Finite Differ-
ence Network', Quarterly Appl Math,October 1953)
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CHAPTER 15
BASIC ITERATIVE PROGRAMMING

REPETITIVE OPERATION

In Repetitive Operation (RO)the entire problem on the
computer is solved repetitively. This is useful for
determining the influence of parameters on the solu-
tion. Potentiometers and switches are operated man-
ually while the computer solves the problem repeatedly.
The RO mode cycle is R, C, R, C, etc. The length
of the R (initial condition or reset) and C (compute)

| <Rl
|.—%5'

DIVIDER —l
|— COUNTER

intervals can be set approximately by the controls at
the console. Usually the C interval is adjusted so that
the problem solution time is long enough for one to
observe the significant part of the solution. The R
interval is set sothat all integrators return to correct
initial values. The RO controls are calibrated only
roughly. For a more precise setting of the IC inter-
vals, the program below can be used with the RO
selector switch at the console set to EXTERNAL:

0
mi
N\ comp TIME
ni -2/
L1 COUNTER
I N\
2
0 Lo 3\ RESET TIME R t— [ F
n2 / T
[:‘ S N2 - C
L{ COUNTER | Ay L~
4 MASTER
RESET
m3
n3
ov
MASTER =@ o— <:F—RT'
RESET
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The output from the F-RT' terminal resets the divider,
" counters, and clock, because the logical function
(GATE 1) + F-RT' is connected to the 0OV reset ter-
minal. Note that RH=F-RT'. The clock is off as long
as the F-RT' terminalisa logical 1. The F-RT' ter-
minal is a logical 1 whenthe main machine mode is R.
The FF is reset whenever

(GATE 1) + F-RT' = 1

When the FF is reset allthe integrators will be in the
R (IC) mode since the R output of the FF is connected
through a driver tothe R terminal. Each time the FF
goes to the S state, the divider and counters will be
reset momentarily due to the connection of the in-
verted output of Gate 2 to the +V terminal. The FF
will be set when Gate 2 = 1. The logical equations
for the gates are,

Gl

]
B

)
(3]

=
w

G2

Thus, the reset and compute intervals are,

R = 100m3 + 10m2 + m1

100n, + 10n, + n

c 3 2

1

times the period of the divider output.

Note: The connection to patchboard C terminal turns
on mode switch compute light during C portion of cycle.

ITERATIVE OPERATION

In iterative operation (I0), results obtained during or
at the end of one solution of the problem are used to
change parameters or the circuit configuration (switch-
ing) for the next solution. The termIOhas an obvious
derivation from mathematics. In IO, integrators and
DAC's are used for memory. Thus, inparticular, there
is a need for integrators with opposite or complemen-
tary logic. These are called complementary integra-
tors. They must be in the R(IC)-mode when the pro-
blem is being solved and in the Hold-mode while the
normal integrator is in the R-mode. The C-mode can
be used instead of the H-mode if the integrator has no
compute input, but only an initial condition input.

The chart below shows the relationship between inte-
grator modes

Normal Complementary
Integrator Integrator
IC C
H H
o) IC
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The mode duty cycle for integrators in IO is

NORMAL {H

(¢}

COMPLEMENTARY { H

LIC

The insertion of the hold interval avoids timing prob-
lems between mode switches for normal and eom-
plementary integrators. Italso has another important
purpose as shown below. Suppose a complementary
integrator is tracking a problem variable, X,

and x is rapidly changing. Then if the C-integrator
goes to compute when the N-integrator goes to initial
condition, the C-integrator will not store the final
value of the N-integrator due to the time constant of
the IC-circuit:

N-OUTPUT
N-MODE

|
l
COMPUTE ! IC

This problem canbe solved if the C-mode command to
the C-integrator is delayed:

N-OUTPUT

C-OUTPUT
: ] & N-MODE
c f IC
COMPLEMENTARY
C- COMMAND

Without the insertion of the hold interval this cannot
be accomplished. In some problems, both the N-, and
C-integrators are used for computation, in sort of a
bang-bang fashion. For example, if thereare two sub-
simulations, each of which depends on the final values
of the other, then both types of integrators are used
for equation solution, not merely memory. In this



case delayed commands for both types are necessary.
If all the variables are sufficiently slow, then the need
for delayed commands is obviated. The implementation
of mode duty cycles and delayed commands will be dis-
cussed presently.

The programmer needs a switch at the console to start
I0. This is the RO mode switch when the RO selector
switch is in external. It follows that there must be a
"safe' mode when not in IO. This is the standby or
S-mode and is activated by the reset switch for itera-
tive integrators. Consider the circuit

It is plain that the N-integrator must be in IC in the
S-mode. The C-integrator cannot also be in IC in the
S-mode because the two integrators would form aposi-
tive feedback system resulting in instability. The C-
integrator cannot be in compute since it may have an
initial compute input and consequently would integrate
to overload. Thus, the C-integrator must be in hold
during the S-mode. Finally, there may be non-IO
integrators in the program and these must remain in

The patching diagram for IO integrator control is

F F
IRT :RT
|
R F
R RQ RO _'; o_RQ RO
RESET RESET
R F R F
o— — —Q 0— — —0— — -0
HOLD HOLD
NON-IO WITH HOLD NON-1I0 WITHOUT
HOLD

The F-RT terminal is energized when the machine
mode is Reset, putting N-integrators in IC and C-inte-
grators in Hold. The F-Holdterminal willbe energized
when the Hold button is pushed, putting both N-integra-
tors and C-integrators in Hold. There is no conflict
withthe RO C-, R-terminals since these terminals are
disconnected from the patchboard in any mode except
RO. When the machine mode is RO, the problem Hold
or H-terminal on the patchboard will be connected to

Compute or Hold during the iterative cycle. The fore-
going can be summarized by

NON-10 c
INTEGRATOR  H
(NO HOLD) IC

c
NON-IO
INTEGRATOR A R B
(WITH HOLD) i : : I : L
T
C | | |
Ny I |
N-INTEGRATOR |1 |
IC [ I
oo
N
I I I B
C-INTEGRATOR © : : : :
) L
N EEEEEEE
1
RO T T 1 T 11
MODE [ O IJI>,‘
/ [ b
t=o0
F F
|RT IRT
R RO\ L RO F R bE
o— = = — o
RESET RESET
R F R F
&N o—— ¥ _
HOLD HOLD
NORMAL I0 COMPLEMENTARY 10

the F-Hold terminal. Consequently, to put both the
N- and C-integrators in Hold, it is necessary that
the H-terminal be energized and that neither of the
RO C-, R-terminals be energized by C, R inputs
from the patchboard respectively. The diagram above
shows patching for various integrators with mode
relays. If electronic mode control is used, then the
relays are replaced with electronic switches as shown
in Chapter 6.
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The logic program for basic IO control is shown below.

DIVIDER

()
)

TO RESET COILS
- OF DELAYED

N COMPL.L
(s—

HOLD

COMP

RESET

vV YV ¥
\J

0
§ [om
Uu Im
N
T [c -jDH
L D3
Iin (o
= oH2
o [12
v [ce
N
e |R2 )
R
FS1 —R
» | ¢
DOWNYUP
) )
R R
|-°—Ls T T
U AU N
FS2
DOWNﬁ;’ ) ¢
L,
- ov

F-RT'

Fig. 1. Iterative Operation Logic Control

Assume FS1 (Function Switch No. 1) is up and FS2 is
down. Whenthe machine is inthe Reset mode, the out-
put of the F-RT' terminal willbe alogical 1. This out-
put is used to reset the divider and counters and to
place both FF1 and FF2 in the R-state. The clock is
off. FF1and FF2form atwo-bit binary counter. (The
10 cycle H, C, H, IC corresponds to the counter out-
put 00, 01, 10,11.) Gate H is ready. When the RO
mode switch is activated the decade counters will start
and both N, C-integrators willbe inHold. At 10I-I2 + H1

15-4

the coincidence at Gate H will reset the decade counters
and advance the binary counter to 01. (The use of the
output of Gate DH will be discussed later.) The output
of the binary counter will ready Gate C, therebyputting
the N-integrators in Compute, and the C-integrators
in IC by energizing the C-terminal through its driver.
At 10C2 + C1 the coincidence at Gate C will reset the

decade counter and advance the binary counter to 10.
The output of the binary counter will ready gate 1 and



put all integrators in Hold. At 10H2 + H1 the coinci-

dence at Gate H will reset the decade counters and
advance the binary counter to 11. The output of the
binary counter will ready Gate R, putthe C-integrators
in Compute, and put the N-integrators in Reset by
energizing the R-terminal through its driver. At

10R2 + R1 the coincidence at Gate R will reset the

decade counters and advance the binary counter to 00.
The circuit is now ready togo through the same cycle

again.

If FS2isup, thenthe IO cycle will start with C (i.e., it
will skip the first and only the first H interval).

Delayed Hold commands are provided for the delayed
complementary integrators by gate DH and the associ-
ated FF. The logical equation for gate DH is,

H - DH, - DH

DH = 1 9

Note that

IODH2 + DHl < 1()H2 + H1

so that the FF will be toggled before the end of each
Hold interval. This causesthe Reset periodof the de-
layed complementary integrators to bracket the Com-
pute interval of the normal integrators.

Delayed Hold can be obtained by other means. Delayed
Hold can be generated for both N-, and C-integrators
by delaying the deactivation of the C, R inputs, res-
pectively. The circuits for obtaining these delays are
shown in the following diagrams. The inverters are
those associated with the preceding gates.

A simpler but less flexible IO logical control program
is

A

N
L~

0.s.

o0}

> C

¢

N
L

0.S.

If FS1 is down, the logic switch found on the counter
module can be used to single-step the computer through
the iterative program.

If the machine Hold switch is depressed, all integra-
tors, IO and non-IO, will go into Hold. This happens
because the R, C inputs at the patchboard are discon-
nected from the F-RO and R-RO terminals inthe inte-
grator modules and the main machine mode takes pre-
cedence. The clock input to the divider is also stopped
because the RH terminal output is a logical 0. This
saves the state of the divider, counters, and two-bit
binary counter. Consequently, the iterative program
can be put in Hold at any time while preserving its
status. To return to the iterative program after being
in Hold, it is only necessary to activate the RO mode
switch.

Sometimes it is desirable to control either the C or the
IC-interval or both by an event in the program. This
is accomplished by using comparator outputs instead
of decade counter outputs as inputs to the appropriate
gates.

[ 33

i DIVIDER N CRH
COUNTER io— Fs ?ﬁ) CLOCK
I
° LS. = I~
v
) [\ 8 N
: T VR 7
S S -\ ,\
/ L~

& 0V

FRT' D>—=e-
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This program will permit only an I0 cycle composed
of 10 time intervals. As before, the RH' output is
used to gate the clock.

MODE CONTROL NOTATION

When delayed commands are to be used for an integra-
tor it will be denoted by:

> o [l

depending on its type

Integrators can be controlled separately by pairs, not
under general IO control.

In this case the following notation is used:

>

R=LOGICAL EXPRESSION (IC RELAY)
H= LOGICAL EXPRESSION (HOLD RELAY)

For example, R = L1 . L2. The drivers are still used

as logical andpower buffers. If a resistor rather than
a capacitor is used for the feedback element of an inte-
grator amplifier, then the mode control relays can
still be used. The notation is

B oo o D

R=LOGICAL EXPRESSION
H=LOGICAL EXPRESSION

Thus, a summer canbe made to act as a sampler in a
sampled data system by controlling the hold relay.

MEMORY CHAIN

A memory chain program is

f(t)

- [ > [P

This circuit will store a sequence of values of f(t). The
first integrator requires a delayed command to obtain
the final value of f when the program which generates
f goes into Hold. The chaincanbe any length desired.
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ACCUMULATOR

1
K

This program will compute the sum of n successive
values of {:

[y

n
e, = ¥ Z f(ti).

The pot is for scaling. The output, ey asa function
of time is

Note that the complementary integrator has two IC in-
puts. The second is obtained by patching a resistor
between the output of the normal integrator and the 1J
terminal of the C-integrator.

AUTOMATIC RESCALING

Sometimes it is necessarytorescale a problem during
the computer solution in order to meet the accuracy
requirement imposed on the simulation. This occurs
because of the wide range of variables involved. One
good example of this situation can be found in the sim-
ulation of a nuclear reactor start-up, where the neu-
tron level may rise through six decades of power. A
technique is presented here for automatic rescaling.
Although only a simple example is used for illustra-
tion, the technique is applicable to the reactor start-
up simulation and many other similar problems.

Suppose it is necessary to generate a function, f(t),
where

- at
ft) = Kne

a > 0

K = amplitude scale factor,
n

and as the function exponentially increases and reaches
some limit, f(t)max, it is required to perform ampli-



tude rescaling and proceed with the simulation. The
following program automatically fulfills these require-
ments.

The integrator required for the generation of f(t) is a
normalintegrator. The compute interval is controlled
by a comparator. The function switch is in the Up
position only at the start of the simulation and the ini-
tial IC of the integrator is entered from potentiometer
1. The switch could be replaced by a function relay
energized by the FR bus. TheIOlogic program (Fig. 1
or equivalent) goes through its cycle and waits in the
Compute mode until an external signal commands it to
go into the Hold mode. Note that the comparator out-
put is used instead of the counter output to activate
Gate C (Fig. 1). This signal occurs when the output
of the integrator reaches a limit set on potentiometer
2 and the comparator is triggered. A complementary
integrator with a delayed command learns this value
andfeeds it to the 1J terminal of the normal integrator
through potentiometer 3 and a resistor R.

As the logic goes to the IC mode, a new initial condi-
tion is established and the entire process is repeated.

The amplitude scale factor Kn is given by the follow-
ing equation

K =K

n
S L N N

where R is in megohms, ¢ is the setting of potentio-
meter 3 and n is the number of scale changes.

FUNCTIONS OF A DEPENDENT VARIABLE

This technique is not highly accurate, but is useful if
precision is not a requirement. Suppose we want to
generate

f(x), x = x(t)
If f is the solution of an ordinary differential equation

L) f(t) = c(t)

Where L(D) is a differential operator, then

X
fx) = § L7l @)cwat.

N -i00
iu
Qe FS
(O—73 b
r = COMPUTE INTERVAL
B c GATE OF LOGICAL
CONTROL PROGRAM
f(t) max
® 100
o—a]| |
8 -100

We see that time can be used as a dummy integration
variable. Suppose g(x) is the solution of

M(d) g(x) = bft).

That is

X
g = | M1 Dbt

Then f {g(x)} can alsobegenerated, using time as a
dummy variable, from the simultaneous solution of

gx) 4
S L™ (D)c(t)dt

fgx))

X1
{ M1 O)bityat.

1t

g(x)

The program for the generation of f(g(x)) is,

Z}— COMPUTE GATE

g )

-

f (1)

IB> ID f(g(x;))

The comparator is energized when g_l(t) = X, so that
t = g(x). Therefore, the output of the f circuit at this
time will be

f(gxy))-
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 Example: f(x) = Ke~

—|>71§L
1

|=

o
o

D-— COMPUTE GATE

-100

)
\J
K

The comparator will activate whent = x. The output
of integrator N1 is Ke™! so that the output of integra-

tor N2 is Ke *. If these IO integrators compute at
high speed, say with 0.001 pfd capacitors and elect-
ronic mode control, the output of N2 is a closed stair-

1
Example: f(x) = x3 , x>0

Example: f(x) = Ag + Ap X +—2T2x2 +3—§3x3, x >0.
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case approximation to ke *®) sor slowly varying x(t).
This IO program can be used as a subroutine for a
non-IO main program.

The same general comments apply to the following
examples.

Z}—- COMPUTE GATE

D—— COMPUTE GATE

f(x)



PERIODIC FUNCTION GENERATION

Suppose a non-IO program requires a periodic func-
tion. We can use an IO integrator and a function gen-
erator to provide the periodic function. The function
sub-program is

t - RATE
a——O——U>— DFG f (1)

Here the N-integrator is under regular IO control. The
main program will see the output of the DFG as a per-
iodic function because its non-IO integrators are in
Hold during the time the N-integrator is in IC and Hold.
In fact, the Hold can be eliminated if there is no other
IO calculation to be performed. The non-IO integra-
tor must have the logical control

sothat it will be in Hold, not IC, when the IO integrator
is in reset.

NEWTON'S INTERPOLATION FORMULA

£, £ ilx)
f [xo] 4 fo
f1 -f
f xo’xl:l 2 xl-x(:)
f Xy, Xg - fix ' Xy
f [xo,xl,xz] = [ X:l'xo [0 ]

and generally

f [xo,xl, ..oy xn] =

f[xl’XZ" TN xn] ~-f Xy X5 "xn-l]
X =X

n o
We have
f(x) =1 %] * (x-x ) Epx] - (1)
f [x o x] =f [xo,‘xl] + (x-xl)f [Xo’ Xy x] ----- )
and generally

f X - .,xn_l,x]= f [xo,. . .,xn] +

(x-xn)f [xo,- O 4 x:l .

Substituting (2) in (1)

fx) = f [xo] + (ex ) f [xo, xl]
b Gex ) (eoxy) £ [xo, X, x]
and
fx) = f [xo] + eox )1 [xo, xl] oo
boex ) ex ) [xo"“,xn] + E®)
where

E(x) = (x-x)°°°(x-x))f [xo’",xn, x]

I f has polynomial form, then for sufficiently large n,
E=0. A good approximation for f, in any event, is ob-
tained by assuming E=0. The result is called Newton's
interpolation formula. This formula can be used to
provide a continuous representation of a function de-
fined at n points. The intervals X, xi-l need not be

equal. However, to simplify our derivation we will
assume that these intervals are equal. It should be
remembered that the continuous memory to be devel-
oped canbe used for unequal sample intervals with dif-
ferent values for coefficients in the computer pro-
gram. We let x ~ o and assume all XX 4 = a.

Then
(E-1)"
o0 _ o) n _é
f [xo, ,an = ——n!an , E fo fn
and

A m'am i=0 i
so that
. n (E-l)mfo m]il y
Q=1 +Z m] =0 G- @)

m=1

For a specific number, k, of Eafo a representation of
fé) can be obtained for (3). For n=3, we have

E&-1)%

1@ =1, + EB-Df, Q)+ —5 2@ G- 1 +

(E-1)3f° Xy X X
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collecting terms _ 1 3 11
9 3 f(x)-fo+ (§f3-§f2+3f1-6—f0)x
E-1% 2(E-1) f-l
1@ =1+ |(B-1) - 2+ 2 & x>
a o o 2 6 J'a + (-f, + 4f, - 5f. + 2f )5+
2 3 - 3 2 1 o’ 2!
I_(E-l) f 3(E-1)t
o ol x2
' L 2 ) 6 (E) ¢ 3f, + 3f f 5:-3-
3 + (g - 31y + 36y - 1) 3
(E-1)f 3
+ __6_0 ()
2 CONTINUOUS MEMORY
_ le .3 u
f(x) = fo + (3 f3 5 f2 + 3f1 6 fo) X
In the analog computer we can retain a continuous rep-
resentation, f, of f by sampling f at n points (not
¥ (_lf 226 =D 4 )x2 necessarily uniformly spaced). f can be generated
273 2 271 o later on command with the interpolationformula, The
computer program which implements this operation
1 c 1 ; 1 ‘ 1 3 from four uniformly sampled values of f is shown
v iy glh t gl mE X below.

f(t) T

+f(to) —f(t)

.3(‘) 3
o—
I
60 -2
ololojo olole =
(1 N N N

Comparators canbeused in conjunction with one ramp
integrator to de-energize the R-relays of amplifiers 1,
2, 3, 4 in the proper time sequence. The integrators
are switched from the initial condition mode to the
compute mode when it is desired to "playback" f{t).
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I, instead of T(t), it is desired toplayback f (T-t), the
summers and switches are added to the integrator
chain as shown below.

— <[ A< A<=

The procedure is the same as before except that the
switches are energized at t=T.

Although only the circuit for four uniform samples of
f is shown, the technique can be extended to the case
of n non-uniform samples. Thepot coefficients can be
calculated previously with a digital computer or desk
calculator.
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CHAPTER 16
SAMPLED-DATA SYSTEM SIMULATION

Sampled-data systems result from the utilization of
telemetry, digital control, multiplexed controllers
and other devices of a similar nature in a control
system. The analog computer is a useful tool for the
study, evaluation and synthesis of bothlinear and non-
linear sampled-data systems.

THE SAMPLER

The single-rate sampler is a switch whose periodic
duty cycle is shown below.

At
cLosen+ |-
st
OPEN- ; ;
1 1
to TotT we: S

It £(t) is sampled by this switch, the output function
is denoted f*(t).

~ > £%(1)

f(t) 20 _

N,
RN

f(t) —o

In most sampled-data systems, At is small com-
pared to T. In classical analysis At is assumed to
approach zero with finite area, so that f*(t) = £(0),
£(T), ---. The introduction of this assumption may
or may not significantly alter systembehavior. When
the analog computer is used for analysis, the sampler
can be simulated exactly. The H-relays for the inte-
grator amplifiers can be used to represent samplers.
The duty cycle of these relays can be automatically
implemented with the digital logic.

The sampling operation produces sidebands.
1 a0

T 2 Fle+jnw),

n= -«

Li* =

(L indicates Laplace transform)

In order that the sidebands donot

overlap, we must have

2T
where Wy = -

Ff=0,lw|>%.

(The operator F is the Fourier transform.)

If there is sideband overlap it is not possible (with
techniques considered here) to recover f(t) from f*(t).
Of course, in practice, it is usually not necessaryto
recover f(t) exactly. Consequently, judgment is re-
quired to determine the extent of allowable sideband
overlap. This is one question which is conveniently
answered with the analog computer.

FUNCTION RECOVERY

An ideal filter for function recovery has the Fourier
transform

T@ = Adw)el?W
Alw) = 1, |w|swc

=0, Jol>u
o) = -k

Thus, if F(w) is the Fourier spectrum of f(t), and

Flw) =0, Jo|> w,

then the Fourier transform of the recovered function,
F'(v), is
F'(4) = T()F*(©) = F(w) e 5
so that
1
1 = —— -
f'(t) T f(t-Kk).
T(w) represents anideal low-pass filter and a 'cardi-
nal data hold" if k = 0.

The impuse response of the ideal low-pass filter is

w Sin [w_ (k - t)]
C C
T(t) = T w, (k- t)
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The filter is not physically realizable due to the pre-
cursor (response for t<0). Ideally w <w, < (ws - wl)

where W > 2 W O should be sufficiently greater than

2 wl so that an adequate practical filter can be found.

The foregoing applies to piecewise continuous func-
tions. Special filter techniques such as clamping
can be used for discontinuous functions 1. Hold cir-
cuits are useful approximations of the ideal low-pass
filter.

Zero-order hold filter:

Let the zero-order filter satisfy the relationship

f(nT +t) = f(nT), 0<t < T.

That is, the hold circuit senses the value of f at
t = nT and holds this value until a new value is
sensed at t=nT +T. Suppose f(t) = uo(t) so that
F(s) = =

Then

If the transfer function for the zero-order hold cir-
cuit is T(s), then

T(s)F*(s) = %
1 1-5T
T(s) = sF*(s) ~ )
Thus
-] T
.y l-e @
T(w) = e
up [T cier
5= [e 2 o2 ]
T(jw) = Te -
2].(0.:2_)
1

M. Schwartz, "Information Transmission,Modulation,
and Noise, ' McGraw-Hill, 1959,

16-2

T(jo) = Te Gl ¥
wT
TR
Sin (—?)
G - o
2
o) = - &F
Glw)
:
N\ /CARDINAL HOLD
(]

wg 2wg 3wy

A computer circuit which simulates a practical zero-
order hold filter is shown below. Integrator modes
are controlled by the IO logic.

F*(s)

-Ts
|1-e
F*(s)[ 5 ]

If an ideal hold filter is to be simulated, then the main
computation must be interrupted while the memory
loads.

First-order hold filter:

For the first-order hold filter, we have the predictor
£(aT +t) = £(0T) + & [£(T) - £T-T)] , 0<t<T.

If £f(nT) = 1 for all n, then the output oft) from
the filter is

oft) = 1 +

Thus, if the transfer function for the filter is T(s),
then

O(s) = T(s) F*(s)
1
P et



4 1 1 -sT
O(s) = & +——F)(1-e77)
S Ts2
! 1 -sT\2
- Tk) =G +—=)@1-e77)

Ts

It can be shown that if T(jw) is expressed

TG = Glwel?¥

then
sin 2T 12
G(w) = Vw2+1 2
oT
2
-1
&) = -0T + tan ~w
Glw)
T _\_ —CARDINAL FILTER

1
]
U

wg 2wg 3dwg

K-th order hold filter:

The predictor for the k-th order hold filter is

k
m
f(nT +t) = Z Erﬁ_' a™ fnT) , o< t<nT

m=20

where A is an operator such that

Af(nT) = % f(nT - T).

Practical low-pass filters:

Recovery can also be accomplished with a variety of
low-pass filters. The analog simulation of the sampled-
data system usually will provide a means of deciding
the filtering requirements. Various types of filters
may be tried in the simulation.

RIPPLE

Various responses in the sampled-data system may
contain components that are either completely or
partially hidden by the sampling process. These are
called ripple and may have a bearing on system
stability. In classical analysis, the system response
between sampling instants is examined either by the

introduction of fictitious samplers or the use of the
modified Z-transform. The analog computer is an
effective tool for evaluation of ripple since the con-
tinuous time response of all elements of the system
is available for observation.

PULSE TRANSFER FUNCTION

In what follows, it will be assumed that all samplers
are synchronized and have the same period T. In
order to find the pulse transfer function of an element
of a sampled-data system, consider the simple sys-
tem below

%*
r(t)—»—/'“) 6ts) P e ewy

We have
C(s) = G(s) R*(s)

0

C*e) = 7 Y Cls +ine)
n=-c
C*(s) = Tl Z.o: G(s +jnws) R*(s +jnws)

n=-c

Note that R*(s + jnws) is periodic -with period w,.
(Consider the sideband structure. )

Thus

R*(s + jnws) R*(s), for alln

C*(s) = R*(s) -Tl— i G(s +jnws) ...Equ. 1
N=- o
C*(s) = G*(s) R*(s)

From the relationship between the Laplace and Z-
transforms, it follows

Glz) = g—gg

Where G(z) is the pulse transfer function and is the
Z-transform of g(t), the impulse response. For con-
venience, we will use F(s), F(z) to denote the Laplace
and Z-transforms of f(t), respectively, although F(s)
and F(z) have different functional form in general.

PULSE TRANSFER FUNCTION OF VARIOUS LOOPS

For convenience, we define

z {F)} 2 z{L lFE)
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The system
rn—e—"" 6 () o) [t
satisfies

C(s) = G;(5)Gy(s)R*(s)

C*(s) = [Gl(s)Gz(s)R*(s)] *.

C*(s) = [Gl(s)Gz(s)] *R*(s)
Example:

r (1) ——f G

Example:

r(t)

Cit)

(see equation (1) above). Thus

—CRJ(?) = 2 {G,(6)G,(5)}

It is convenient to denote Z{Gl(s)Gz(s)} by G1G2(z).
It is important to note that Gle(z) = Gl(z)Gz(z).

The computer block programs for the simulation of
various simple sampled-data systems together with
the closed-loop pulse transfer function are shown in
the examples below. In each case the sampling func-
tion is implemented with mode relays under IO logic

1 1

In all cases G=S+a, H=‘s‘

control.

(The symbol f for an integrator means it is not under
10 control. The normal IO logical program is used
for the sampling amplifiers).

— A1)
C(z)=GR(z)

[va ()

) G ()] I cin )
. _G(2)R(2)
(@)= 6H(2)
H

rit) - &(t)
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Example:

r(t) s ~ G ——/ 1)

G(z)R(z)
I4+G(z)H(z)

C(z)=

r(t)

»-Cl1)

[R>
L~

Example:

+
r(t) > G j/—w:*m
H hal—

GR(z)
I+GH(z)

C(z)=

r(t) -c*1)

/
N/
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DESIGN TECHNIQUES

Root-locus:

Root-locus plotting techniques apply without modifi-
cation in the z-plane. The region of stability is
|z| < 1. The interpretation of the locus is somewhat
different. The family of circles

represent constant damping, «, (not damping ratio)
for the response

f* = [e-o‘t COSwt] *
The family of radii
Argz = ¢ = wT

represent constant frequency for the above response.

Thus, ¢, the damping ratio is given by

t = Sin

1 64

,’ 2 2
a + w

or equivalently
Sin”? ,_—_a
t{ = Sin —_——
0'2 + 92
Pole-zero cancellation techniques:

Suppose the desired pulse transfer function for the
controller

16-6

Ris)—8> — 6(s) H 6(s) Cls)

(where Gc(s) is the compensating function) is given

by T(z). Then since

G G(z)
_ C@) _
T() = R(:) = lc+GcG(z)
we have
T
GCG(Z) = 1—_%)-(-2—7 .

This technique is useful when GC is realizable.

Digital Compensation:

A digital controller can be used instead of a com-
pensation network above. This controller can be
simulated with the analog computer if it is suffi-
ciently simple. If not, then a hybrid system may be
used with the analog computer simulating the remain-
ing sampled-data system.

MULTIRATE-ASYNCHRONOUS SYSTEMS

Multirate and asynchronous sampled-data systems are
at best difficult to analyze with classical techniques.
The analog computer, with its asynchronous control
structure finds powerful application for such problems.



CHAPTER 17
PARTIAL DIFFERENTIAL EQUATIONS - PART 2

PROPAGATION OPERATOR

There is a class of equations which can be solved with
the similarity transformation

i
o®) = (T 1”T) 4@R)

where T is a suitably defined integral transform over
3R (boundary of the region, R) and propagation into R

is alongthe x' coordinate of R. That is, the surfaces

xi = constant are ""concentric'' to aR. (T~ 1AxT) is called
the propagation operator and A the propagation function.

That T"1a%T exists, canbe shown if R is homogeneous
in the boundary coordinates. That is, usually R can

be non-homogeneous only in x'. We will use this ap-
proachtofind Green's functions for the solution of dif-
ferential equations where we know the required inte-
gral transforms over 9R.

First we derive A for a few simple cases for the pur-
pose of illustration.

Consider the cases:

uyy = u (1)
Uy T Yy (2)
uyy = u 3)

We will use the Fourier transform and its inverse. We
claim (for propagation along the x coordinate)

i y) = T 1A% (@
-5 :i G (eI Vo .
Then,
uyy = %ﬂ j: -szx G(w)ejwy dw
Uy T %—ﬂ _“?: 1n2A & G(c«))ej("y dw

u == S In A A® G(co)e]wy dw

For (1) above

1
+u = =

c, 2 .2
uyy xx 5 S(-w +1In“A) .

- 00

AV G dw = 0

for arbitrary G. Asufficient condition for the vanish-
ing of the integral is

lnzA = w2
A= e- |w|
and
ux,y) = T e 191X G
-1
u(0,y) =T ~ G
so that
Glw = (T)u(0,y).
Consequently
ol - ox
ux,y) = (T e T) u(0, y)

and ('I‘-le_ IC"IX'I‘) is the desired propagation operator.
For (2) we have

jw

g ]
—;—W j(-wz - InA)e

y
G dw =0

so that for arbitrary G

and the operator is

For (3) we have




Let

uy) = T G @ + T A Gy
- 1l %G ) + T e 19X G2(y)
Then
uxy) = T el 6 ) - T hwe %G, ()
wu©y) - 7! Gy(w) + 7! Gy (w)
W (0y) = T juG @ - T jo Gyl
Gy + Gyl = (Mu(0,y)
G - Gy = () u ©0,9)

6@ =3 [MuEy + Hmu0y)

Gy =% [MuEy - 5Mu )]
-1 /%
u(x,y) = \T ~ =5—(T) ) u(0,y)

-1 eij
+ (T 2].—w<T>) u (0, )

)
. (T'l R xm) u(0, y)

o1 eTivx
- ('r 1 S (T)) u_(0,y)
ulx,y) = (T'1 COsSwX (T)) u(0, y)
+ (T'1 S%’-’im) u (0,y) .

Let's examine one more case

2 2 2

9 9 u ou
— El—3z)+m —5 =0
ay oy oxX

Let EI, m be constants and define

m
k-EI
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so that

then

and we see from the last case

1 w2
ulx,y) = (T' cos(=% )T)

0,
= )u( y)

w
[ —] (T)) u (0,7)

SUMMARY FOR POLAR COORD'S (r, e).

(T) £ (o)

1 Fn

For V2¢ = 0 we have

u(r,e) =

ForV2¢ + k2¢ = 0w

u(r,e) =

HIGHER DIMENSIONS

2 .
j; "t e gy - F)

LS rwe™ - 1)

= 00

(T-1 el nI(T)) u(0, )

e have

J_(kr)
(T'l [3:-:@] (T)) u(0, o)

We can derive similar results in higher dimension with
the use of suitably defined transforms on 3R.



GREEN'S FUNCTIONS

We proceed to use the propagation operator to obtain
Green's functions.

Casel: u + u = 0.
—_— XX yy

u(x, y) (T"le'ic"I x T) u(0, y)

1 [ F -lolx jw
(o)

- o0

o0

| u©,0) et g

“ o0

- %"(_;[ u(o’ g) dg)-;[ e- |w|Xejw(Y'§) dy
Now

§ emloix + July-tly,,
J 000 ex g,
0

e+wx ejw(Y‘ g) dw

+
8=—o

1 + 1 _ 2x
x+j(@-y) %Iy 20 )2

so that

o

uxy) =+ f @plo 4

- X +Hy-t)

Casell: u = u
- yy X

o 2
1 _ .
ulx,y) = > fe w X J9Yq,

- 00

A S, ;)e'j‘”’dg)

- 00

=1 [u0,0a

o 9 .
| [e @ % Jo-0)yg, ).

-0

Now

00 2 . 0 2
fe-w X er(Y'C) = f e-w xCOSO.)(y‘L) dw
2

+j fe-wxsinw(y-g) dw

© 2
=2 fe ¥ *coswly-t) dw
0
-(y-c,)2
I SR *
2Vrx
so that
2
- -(14%) 0
u(x,y) = fe ¥ u©,8) g
dp\fr - vx
CaseIIl: u = u
EE— yy XX

ulx,y) = (T-l coswX T) u(0, y)
-1 si
+ (T smwa T) ux(O, y)
Let f(x,y) = (T-1 coswWx T) u(0, y)

_ -1 sinwx
soy) = (171 S 1)y 0,y)

Then
f= %r :!; COSwX erydw
\ S, c.)e'ngdc)
1 -]
=5 Juo, 0
. ( fcoswx ejw(y-g) dw)
Now

fcos«ux e]“’(y’g)dw = f coSwX cosw(y-¢) dw

-c0 -0

fcoswx ejw(y-é)dw =1 [5 (x-y+¢)+8 (-X-Y“‘é)]

-0
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and Finally,

fy) -5 [u0.0 [s6y0) uGy) = 3 [5(0,y-2)+u(0, y+)]
+ 8(-x-y+c)] dg y+x
+ —;— 5 u (0, ¢)de .
y-x X
i y) =5 [20,y-%) + (0, yx)] -
Case IV:
Also Consider uyy =u, intheregion0 =y =, 0 =x.
g y) = [V do
- T1y) = { £(0) sin nar = F@)
o ) 0
fu 00 e Fa
g -1 2 = .
- T ~ F(n) = = o1 F(n) sin ny
=% f (O’ L)de fﬂ%‘i’_’i [cosw(y-g) 1x 2 X
- - u®,y) =T X G@)= A (sinny) G(n)
+ ] sin w(Y-é)] dw uyy =% ;20 K (-n“) (sin ny) G(n)
for y-¢>0: 9w
. w = >=:1 X logA (sin ny) G(n)
Ss“‘“’x cosufy-t) dw = 7, y- { <X
_% We have
= 2r,y-(=X logA = -n2
2
-n
=0, y-t>x A=e
. 2
for y-§<0/. ux,y) = T-l e ™ XGn)
wsinwx u(0,y) = T'l G(n)
o cos(y-g)dw = 7, £t -y<X » Y
G@m) = (T)u(0,y)
~2m, L-y=X
-1 -n2x
=0, ¢t-y>x ux,y) = (T " e T) u(0,y) .
for the first case (y-¢>0) w
2 .
ulx,y) = = E *sin ny
S =r,y>{>y-X T n=1
™
for the second case (y-¢<0) éu(o £) (sin nt) dg
(- yrxoeoy
so in order to meet both conditions
T
S=n,y+x>c>y-x =%Lu(0,g)d;
and
y+x o
g y) =3[ w0 0d. (X ¢ 7 sinny) sinne
n=1
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or to write out a few terms EXAMPLES

ks xx yy
s y) =2 | esiny [ u(0,0) (sing)t +e”sin 2y
0 1%
u(x,y) =;r. fngg)ng
. == x"+(y-¢)
. }’ u(0, ¢) (sin 2¢)dg
o Lett = ¢ - y
_1 [ xu(0,y+t)
9 T u(x’Y)—w_f+dt
+ e "X sin 3y." u(0, ¢) (sin 3¢)de+ . . . !
0

All of these techniques can be implemented using re-
petitive operation. The ideais to evaluate at high speed
the equations for fixed values for the coordinate para-
meters. Then by changing these parameters slowly
the solutions can be found over the region, R, of def-
inition for the equation.

The program is:

ufo,ytt)

DFG

x-u(o,ytt)

gl
8-
11

-100
H
N R
1 et
100 dr
-100 +100 FR-B
FR-A I

I F-RT'oj—o FF MASTER RESET

\ L I ]15]6
2l counter RESET OV

[¢]

Ly Q R —9—0
I T T
s N FUNCTION
FFI

21 wxu(Ozx+t!
ux,y) = f 22 dt

f xu(Oz z—t at

x+t
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The FF's act as an up-counter with successive trigger
inputs to FF1. Whenthe machine is in reset the counter
output is zero and the integrators are in the standby
mode. (The ROselector switch is in external). When
the RO pushbutton is activated, the N-integrators go
tocompute. As the counter is incremented, the mode
sequence is

COUNTER MODE
3 21 FF
000

001 H
010 IC
011 H
100

1 01 H

Note that (FF3) = 0 when the counter has reached 101.
When this occurs there are no more trigger inputs to
FF1 and the program stops. Before this, the trigger
for FF1is provided by the clock (L2) when the machine
is not in compute and by the comparator (Cy) when the
machine is in compute. There are only two compute
intervals. The function relay (FR) is energized (+)
during the first compute interval and de-energized (-)
during the second compute interval.

The analog program is

The first and second integrals are calculated during
the first and second compute intervals, respectively.
The comparator is energized when y +t reaches its
maximum absolute value for each calculation. It then
terminates the compute interval. The final output from
the accumulator is the function u(x, y) for the partic-
ular x, y chosen for the run.

vy x
2
2 _ (y-t)
u(x,y) =50 fe 4x (0, ¢) de
- 2V7mx
Let t=10¢ -9
Y ot
ulx,y) = —1 fe * (0, 1) at
ar\rx
-t
u(x,y) = 1 f e*x u(0, y+t)dt

4ﬂqﬂx

-2

+f e4x u(0, y-t) dt
0

N u(x,y)

-100
|
SJ 8wV wx
N O
I_ \
| -100
2x

100
*°°o—O—[l>- -—-D—' FR-A
+

Q'HO\

¥y FR-8

D—_em |
I._

-100

Both the logic program and the principle of operation
of the complete program are the same as for the pre-

vious example.
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CHAPTER 18
CORRELATION ANALYSIS

PROBABILITY THEORY

Sample space:

A sample space, S, is the collection of all outcomes of
an experiment.

Probability:

P(S) is a function defined over S. P maps S into the
interval 0 < P(S) € 1. Pis not necessarily univalent.
The integral (or sum) over the range of P isunity.
In case S is finite, P is said to assign a probability to
each point of S. In case S is infinite, P is said to
define a probability density over S. Suppose Sq is a
nested collection of subsets of S such that 8; C §; , 1

for all i. The extremum of S,= S and the infemum of
Syis empty. The measure of the range of P for the
monotone sequence Sy is the probability distribution
for S with respect to the collection S, .

EXPECTATION AND VARIANCE

The expectation of S, E(S), is the measure of SP(S).
The variance, V(S); is the measure of

s?p(s) - EXS) .
Example:

Suppose S is given by -« < x < « and

1

2 (x - u)
P(X) = (21r) exp ‘;T—
Then
Ex) = fx Px)dx = g
V) = SXZP(X)dX~u = cr2

Let the Sa be defined by - < x < X, then

X

px) = j P(x)dx

-0

is the distribution function.

STATIONARY RANDOM PROCESSES

If the statistics of a process are time-independent,
the process. is said to be stationary.

Suppose f(t) is a random function defined for
-0 < t < oo,

Let the domain of f be denoted by D. We define an
ordered countable set {D_} so that

D :x. =t <x, b &
i i+1°’

-X. > A
i i+1 i

UuD, = D
i

If fi = f(Di), then the collection fa is an ensemble. If

f is stationary and A is sufficiently large, the ensem-
ble will be ergodic. (That is, the statistical properties
of the members of the ensemble are identical.) Hence-
forth, all ensembles considered will be assumed er-
godic.

FIRST AND SECOND PROBABILITY DENSITIES

Let S be the sample space consisting of all possible
values for the ensemble fi(ti + A)l where A<a.

P(S) is said to be the first probability density. P(S)
is independent of A, since fis stationary. The ensem-
ble is ergodic so that

1]

6
EE - Ym 2 Sf(t)dt
-6

6
: 2
1 2
ve) = 0 g5 [ oa-EE
6

Let ST be the sample space consisting of all possible

pairs of values (fi(ti + 4), fi (ti + A + T)) for the en-
semble where A + T < A. PT(ST) is said to bethe
second probability density. PT(ST) depends only on

T, not on A. The ensemble is ergodic so that

Lim

1
Ep6p) = ;o 55 ) O+ Tt

O S Oy

(It can be shown that this equation is valid for T > A.)
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AUTOCORRELATION FUNCTION

ET(ST), above, is the autocorrelation function for f
and is denoted by ¢ff(T). That is,

[
_ Lim _1
be™ = L Sf(t)f(t+T)dt
-0

The autocorrelation function has the properties:

2) e (o) is the average power of f.

3) 4| < o ©

Proof:
. ']
o] <;2% 55 | lo] - |eem) ot
£
Lim 1 61 2
cim L {3 el -

-6

|te+m)] - [Jeo)] - |f(t+'r)|]‘2$'dt

[
coo) - 22 | el -
-5

£ +T)|:| 2 at

4) fe P — ¢y ¢ P, (is periodic with period )
Proof: f(t+ T) = f({t+T +v)
5) ¢ contains no phase information about £.

6) For every f there exists a unique b the con-
verse is not true.

7) Ef & P for any v, then Lim ¢ff(T) = 0
T—> =

8) If f can be represented by

f = Z AnSin(wnt + ¢n) ,

then
b T = D oy
n=-w

18-2

é
where bn =Lim 21_6 S AﬁSin (wnt + ¢n)
-6

. (Sin (wnt +T+ ¢n) dt)

Proof:
[
Lim—l— SASin(wt+¢).
PR 25 n n n
-6

AmSin(wmt +T + ¢m)dt = 0, m#n.

Tt
9) If 1, f'c bd, then gz (T) = - g (T) .

Proof:

66— ©

6
¢fvf1(T) = Lim % S fr)f'(t + T)dt
-6

5
= Lim % [tor¢+ 1) -
-5

6—»00
4]

Sfl(t)f"(t + T)dt
-5

S £, (O, (t + T)at
-6

CROSS-CORRELATION FUNCTION

Suppose f, g are two stationary random functions. f,
g can be decomposed (as above) into two ergodic en-
sembles f o 8o The union of these ensembles is a

Let ST be the

sample space consisting of all possible pairs of values
(fi(ti +4), g (ti + A + T))for the composite ensemble,

composite ensemble of pairs (f, g)a.

where A + T <A (A is the ensemble duration). Since
the ensemble is ergodic

Qo o,

E(Sp) = Lim > ) 1t + Tt

66—+ > -

[~

ET is the cross-correlation function for the paiit ¢, g

and is denoted by ¢fg(T).



It can be shown that ¢fg(T) is valid for T > A». The

cross-correlation function has the properties:

1) Generally ¢fg(T) = ¢fg(-T) .

Consider g(t) %—

o |t s

2) () = 9-T)

3) Max d’fg (T) does not necessarily occur for T=0.

9) |0 < V1(©) 0,50

Proof:

2 oo L 2, 2 .
#g(T) € Lim 3 (e t+T)dt <

o+

Ot mm—

)

6

. 1 2

Lim T3 s fo(t)dt |
=0

. 1 2
Lim - g (t+T) dt

66—+

8 S 8

AUTOCORRELATION FOR A SUM OF FUNCTIONS

Henceforth we will denote

Lim L

% f(t)dt

‘_\o,

(5-»00

1
(]

by Mean {(t)} , or just M{f} wherever convenient. Let
f(t) = £, t) +1,t).

94(T) = Mean {[fl(t)+f2(t)] [fl(t+'r)+f2(t+'r)]}

= M{fl(t)fl(t+T)} + M {fl(t)fz(t+T)}
M {fz(t)fl(t+T)> +M {fz(t)fz(wr)}
Thus,
TR A % A K R X

1 2

The general rule for a linear combination can be de-
duced easily.

EXAMPLES OF AUTOCORRELATION FUNCTIONS

Example 1 (sinewave):

Let f = ASin (wt + p), then

b = Mean {AZSin(wt + 3) Sin(wt +wT +zp)}

Since f ¢ Pw,

2T
a +t3y
= 3‘5‘—2 Sin (wt +y) Sin(wt +@T +y) dt
%t = 27 In 4 ¥

(o3

aw + P + 21

A2 .
¢ff =35 J- Sin(¢) Sin (¢ + wT) d¢
aw + P
Az 2r A2
bt = Ir j coswT dt= 5 cos wT
(o]

Example 2 (general random function):

Suppose f is defined by
a) fns +t) = f(ng), ot < &
b) P [fns) = x] =Px)

c) E [fns)] = o

then

E [t + T)] = f [xP(x)] [x(l- l%':ld)”

0

SS [xP(x)] [yP@)) Ila‘ dxdy, |T| < s

- 00

- SS [xPx)] [yP@y)] dxdy, |T|> & .

- 00

But SS xyP(x)P(y) = o, so that

- 00
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o Example 3 (binary noise):

T 2 ~ T
P = (l'l_5| ) S x"P(x)dx = V(x) (1- l7| ), T<s Binary noise is a special case of (2), above, where
- T P(x)=lu (x-x)+lu x+x)
=0 T>5 2 "1 o 2 1 o’
That is f takes on values of x , -x with probabilities
Pt 1 o o
of 5
*Vix)
Then V(x)} = X(z) and
T -x% - |L
-8 ) o = X, @ |5l)
Example 4 (periodic binary noise):
Suppose f is defined as in (3), above, except that
f(¢) = f(¢ +v) for large v. Then bt is periodic.
Pt
x8
| i
| |
1 |
| |
] ]
-v -3 o -] v
POWER SPECTRAL DENSITY A 2
R 1 -j
The operator F denotes the Fourier transform, so that ® g("") = Lim 3~ j g(t)e Jwb gy
Fg = G(®). & §-co0 e
8 joT & g((") is said to be the power spectral density. We
@gg(“’) = F¢gg= é‘inl j‘ e dT have
)
(-]
1 %™ = 5 ogg(e’" aT .
Lim - j g(t)gt+T)dt -
O~ A
A WHITE NOISE
¢ (9) = Lim % j g(t)dt White noise has constant power spectral density of ar-
e 5> A bitrary magnitude (say A). Thus, the autocorrelation
function for white noise is
]
; = Au,(T)
Lim 5 g(t+T)e T ar %eg 1
o> where u, is the unit impulse.
1 A ot PERIODIC WHITE NOISE
2 (%) =Lim 33 I g(t) & " dt
gg 50 If f satisfies the requirements for white noise for some
-A interval 6, where 6§ is large, and if f(t+8) =£(t), then
6 -]
: ~juwt
Lim t)e dg
Lim S g(t) #(T) = AZ u, (T-ne).

n=-oco
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FINITE CORRELATION FUNCTION

If f, g are defined only for o =t < <, then

6
Cnm L
¢fg = ;.lrg 3 cS)f(t) g(t+T)dt.

¢fg can be approximated by a sum:

N
z

ot f(m At) g{m At + T) 1)

¢fg = Mean

Inthis case At mustbe small enough that the high
frequency components of f, g are adequately represent-
ed (see Chapter 16). N must be large enough that the
mean of the sum is a good approximation to d’fg'

CORRELATION PROGRAMS

Simple computer programs for (1) require that
At > T. (2)

To obtain the best approximation, At =T + ¢, where
¢ is the minimum time required for sampling in the
computer program. (2) imposes a limitation on the
magnitude of T. Thatis if T is large, then so is At.
Thus, for large T, relatively few samples are made
of f, g. This restriction is not unduly severe, because
¢fg cannot be determined accurately for large T to-

gether with finite histories for £, g.

If (1) is to be implemented directly, the program

[>

MEAN
prROGRAM [~ f9

Integrator 1 samples f and then after an interval, T,
integrator 2 samples g. Integrator 3 is in hold until
both samples are made and then it samples the product
f(ti) g(ti + T). The output of integrator 3 is averaged

by a Mean Program (Chapter 3) which inturn-generates
¢fg' If T is to be specified accurately, the integrator

capacitors must be as small as possible to minimize
the effect of the IC time constant.

The total sampling time can be reduced by replacing
integrator 1 with a quantizer whose input is ftogether
with dither (see reference). f will be represented by
a two-bit word (output of the quantizer).

The table below defines the quantizing function

BINARY DECIMAL
OUTPUT OUTPUT OUTPUT
-2=x<-1 00 -2
-1=x<0 01 -1
0=x<1 10 +1
1=x=2 11 +2
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Except for scaling the program is

ES3
ES2 MEAN
N PROGRAM [ ¢fd
7 v "
g —
ES4
R
f
DITHER
PROGRAM
ESI
c2 Cl
o | 0 1
é—p ESI
+100 -i00
RTS RTS (RTs
ES3 ES2 o p R-H’
(P) )
DIVIDER COUNTER
/
oTT T F-RT/ )—usg +Vt—e
ES4
— R >— R
ES MEANS T i
ELECTRONIC SWITCH L couNTER S

ozl T >—> Rf2

— COUNTER

T3|13

The Dither Program is found in Chapter 10 and the Mean Program in Chapter 3.

The correlation parameter, T, and the reset interval Reference: Korn, G.A., "Hybrid-Computer Tech-
niques for Measuring Statistics from

for integrator 1 are given by (10Tg + 10T2 + T1) P
. gy . :
and (1013 . 1012 . Il)P, respectively, where P is Quantized Data'’, Simulation, April 1965.

the period of the output of the divider.

18-6




An analog computer can be used to advantage for on-
line data analysis. Programs are given in this section
which correspond to the more frequent operations on
incoming data. The analog computer is used for both
processing (analysis) and editing. The principles de-
veloped in other chapters can be used for processing.

The programs here are for simple editing.

CHAPTER 19
ON-LINE DATA ANALYSIS PROGRAMS

The program which measures error frequency is

ERROR FREQUENCY

Suppose an error is defined to occur whenever

ST

ABSOLUTE

VALUE

ERROR PEAK VALUE

Suppose, with the above definition of error, it is re-

quired to find a sequence of peak values of error,

Max |f-g|

Max lf—g| .

The program is

ABSOLUTE

MEMORY
CHAIN

VALUE

DERIVATIVE

1O - e®)] > «-

o COUNTER
—lo
COUNTER
—Jlo
L COUNTER
| ONE | —9—. R
¢ o SHOT glp-wc
NEGATIVE I
ABSOLUTE C
VALUE Y

+100
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All the programs indicated will be found in various
chapters of this manual. The integrators in this pro-
gram are under iterative controlfromthe C, R logical
control inputs. Pot 1 is set toa small value to provide
positive zero derivative detection.

TIME BETWEEN EVENTS

Suppose two events, El’ E2 are defined by

El: ft) - gt) = €
ft) - gtt) = 0
E2: h(t) - mf(t) = €9
h(t) - mt) = 0

A program which will determine a sequence of time
lapses between E;, E, (not E,, El) is

N

f , L +stoPe R
- — C 0 ——] T
P-swope| | s
-100 O-J): +100
h — |
. c + SLOPE
—ep 0 f-swope |/

-100 +100
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CHAPTER 20
SYSTEM OPTIMIZATION

System optimization is a procedure for generating a
response, yg, of a known experimental system so that
it matches, as closely as possible, some desired res-
ponse y4. yq maycomefrom tape or may be the res-
ponse of a known but more complex system. In what
follows we will assume that either an external device
generates yq or else we know the computer program
for it. A measure of the accuracy of fit of yg needs to
be established. This is called the Criterion Function
(CF). The CF has different forms depending on whether
dynamic or static optimizationis required. The exact
form of the CF in either case is a matter of technical
judgment and will depend on the particular situation.
The CF for the dynamic problem will need to take ac-
count of the transient behavior of both yg and yq over
some intervalof time. Typicalchoices for the CF are

STATIC

1 2
F"i’(ys"yd)

DYNAMIC
£ = S: [ys(t) - yd(t)]zdt.

(Note that the CF is defined so that it is non-negative)

The optimization problem amounts to finding maxima
or minimra of the CF. Since yg is afunction of its para-
meters, say Cy,..., Cp, so is the CF. Thus the CF
can be viewed as a surface over the parameterplane.
In general the CF will have several maxima and minima.
We will restrict our attention tofinding the nearest min-
imum from some initial point in the parameterplane.
Once techniques are developed for the minimum prob-
lem, they canbe applied with modifications, which will
be obvious, to the maximum problem.

We will develop two methods for finding a minimum:
steepest descent and relaxation. The static and dyna-
mic optimizationproblems will be treated separately.

STATIC PROBLEM

The family of curves f = constant onthe surface for f,
the CF, are constant elevation contour lines. Differ-
entiating

idC =vi. dC. =0

df = aC; i

E

1

where C is the parameter vector -- i.e.,
C = [Cy, Cg,..., Cy] (Remember that the CF is a
function of the parameters of yg.)

We see that Vf is perpendicular to dC and dC is a dif-
ferential vector which istangential to the space curve
f = constant. The projection of the curve on the para-
meter plane is identical geometrically to the space
curve because it is at constant elevation over the plane.
The projection of Vf on the parameter plane is perpen-
dicular to the curve. It isevident that Vvfcorresponds
to the slope of the surfacefandvf = 0 atthe minimum.
To get to the minimum from some point on the surface,
then, all we needto do is follow - Vf. (If we wanted to
find the maximum we would follow + Vf.) The pro-
jection of the path on the parameter plane is

STARTING
POINT

\ f= CONSTANT (TYP)

If the system is static (algebraic) we can change the
parameters of yg while following - viwithout intro-
ducing transients in the system. Now if

1 2
f=35 05 - 99

then
vi = (g - Y9 V¥g

If welete = yg - yq, then C can be determined by
(since we follow - Vf)

C = -e SVysdt.

or in scalar form

Oys
C1 =.~e qut'
9y
- e \_S
Cn e gacn dt.
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In practice, itisusually advisable touse gain factors,
Kk’ so that

y
- s
C1 = Kles'acl dt
ay
_ s
Cn Kne SaCn dt .

K is chosen sothat the procedure converges but at the
same time is stable. When Vi = 0, the integrals will
be stationary and C will be the parameter vector (point
on the parameter plane) corresponding to the minimum
of f. Vyg is generatedby differentiating the generating
equation for Vg with respect to the parameters Ci'

DYNAMIC PROBLEM

Except under special circumstances, vfcannot be gen-
erated on an instantaneous basis. Even if it could, the
parameters could not be changed during the determina-
tion of f. Sincethe calculation of f is carried out over
a finite time interval, varying the parameters would
lead to a result which is not the CF.

Some definitions for f will permit vfto be computed as
oftenasis f. For example, if

1 ,.T 2
t =5 (y. - ygdt
2 SO s d
then
T
v = So g - Vg Vgt

As soon as we know the components of yg, we can use
a steepest-descent method. After each solution a new
position in the parameter plane is chosen by taking a
finite step along -V{. Now Vyg canbe generated by the
parameter-influence equation method. The differential
equation for each component of Vy_ is obtained by dif-
ferentiation of the generating equation for yg. For
example, if

C ¥, +Cyyg = 0, y,0) = 0, y (o) =4,
ayg Ay
the equations for —=—, —=—can be obtained by dif-
aC1 6C2

ferentiating first with respect to C1 and then C2.

& 'C1d_22(azs)+czzzs = Y
9y at“ 91 1 s

d 3Ys(o)) ~ o Bys(i)

(
& " aC, 8C,

20-2

a . a s s _ _
3C, - €1 . (acz) *Cygc. = Ve
at 2
da (8YS(0) -0 s (0) -0
& ‘aC, » 75C, :

These parameter-influence equations can be solved
with an analog program. Their non-homogeneous terms
are obtained from outputs of the generating program
for yg. It will benoticed that they have identical form
except for the non-homogeneous terms. Due to equip-
ment limitations, it is usually necessary to solve them
one at atime, switching in the correct non-homogeneous
inputs from the y. program in a suitable way. This
leads to the use of the relaxation method.

With the relaxation method we change only one para-
meter, C;, until the component, (vf)j, corresponding
to the parameter is zero or nearly so. The pro-
cedure is applied to all the parameters on a cyclic
basis. An example of the resulting path in a two
dimensional parameter plane is

C2

)

»C

This method obviously is ideal for use with the para-
meter-influence equations. Nothing needs to be changed
in the influence equation program except the non-homo-
geneous term.

In the event it is not convenient touse the parameter-
influence method, successive values of f can be cal-
culated for a sequence of values of Cj. This iscon-
tinued until two values of f bracket (vf); =0. Then
the procedure is applied varying C; +1 and so on. This
will alsolead tothe minimum for f. "In either case the
subscript indexing and switching of non-homogeneous
terms is done with a digital logic program. In the
latter case, successive values of f are retained by a
two or three word memory chain and comparisons made
by comparators.

With either method the step size must be determined
by a gain factor which ensures proper convergence.



CHAPTER 21
MEDICAL APPLICATIONS

Originally published by: Beckman Instruments, Inc.
Author: Hiroshi Hara

ANALOG SIMULATION OF VENTRICULAR PUMP
ACTION

Due to the complexity and non-linearity involved, the
building of an analog model of blood circulation is one
of the challenging problems in biomedical science.
This example is by no means intended to coverthe
subject, but illustrates how iterative programming is
conveniently used in simulating ventricular pump
action.

The ventricle has an inlet valve (tricuspid valve) and
an outlet valve (pulmonary valve). A cardiac cycle
consists of two periods called 'the diastole andthe sys-
tole, as shown in Figure 1. During the diastole, the
heart muscle relaxes and blood flows into the ventri-
cle as the inlet valve opens. At the completion of the
diastole, the systole begins. During this period the
heart muscle contractsandas the ventricular pressure
exceeds the arterial pressure, the outlet valve opens,
expelling blood from the ventricle. An electric analog
of the ventricle is shown in Figure 2. The analogous
quantities are indicated below.

Blood Pressure ~ Voltage
Blood Flow ~ Current
Blood Volume ~ Charge

nth CYCLE (n+1) th CYCLE J
—r Sa— g
DIASTOLE | SYSTOLE | DIASTOLE SYSTOLE
& g—
FIGURE 1

The contraction and relaxation of the muscular wall of
the ventricle is simulated by decrease and increase,
respectively, of capacitance cq in some prescribed

1
manner. If we let E = T elastance of the ventricle,

the pump action is assumed to be described by the
following equations:

-

Sl

[Eq]a-4- A-ESpe”+B[agn 6

d d
e S]n -ed v g, ¥ = £0) @)

where
[Ed]n = Elastance during nth diastole

E = Elastance at the end of n th diastole

[E s]n = Elastance during n th systole
n
s

E

d
n-1° Elastance at the end of (n-1)th systole

[qd] n = Blood volume during nth diastole

v, = Slope of [E s] , to be determined as a

function of qg , the blood volume at the
end of nth diastole.

A, B, and r are positive constants.

Since the static work done by the heartata particular-
value of qg is known experimentally (Starling's Curve),
\Irn must be foundas a function of qg such that experi-

mental results are duplicated. The work done during
the systole is

Tsystole
WS =k '/o‘ Vzilzdt,

where Vg = arterial pressure
112 = blood flow out of ventricle
k = constant

and consequently for a certain qg , ‘I'n must be such
that [WSJ = [ws] Starling. In other words, itera-

tion with respect to ¥, is required.

The passive circuit shown in Figure 2, equations (1)
and (2), and an iteration circuit are implemented as
shown in Figure 3. Note that two iterativecyclesare
required to simulate one cardiac cycle. The distine-
tion between the diastole and systole is made by a func-
tion relay (Relay KO) which in turn is controlled by
one of the memory integrators in a chain of four. The
action of this circuitryis shownby the timing diagram
in Figure 4. Since the compute intervals for the dias-
tole and systole differ, the comparator which controls
the compute interval of the iterative control program
must, necessarily, require two different reference
voltages which are switched alternately by relay KO.
The function of the M2 - M1 memory chain is to make
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ELECTRIC ANALOG OF A VENTRICLE

r-—— """~~~ -~ - - -=-==-== 1
Vo : Ro Vi Ri2 : Ve Ras
o P ANN— o MN— -
| iol Cilt) 12 _T_
I CHARGE, q | Co
' I ]
| = | =
L - - - L _l
VENTRICLE
Vo . VENOUS PRESSURE
V| :VENTRICULAR PRESSURE
Vo [ ARTERIAL PRESSURE
Ro; | INLET VALVE RESISTANCE
Rj2 . OUTLET VALVE RESISTANCE
C; . VENTRICLE CAPACITANCE = —ls- +WHERE E=ELASTANCE
q 1 BLOOD VOLUME
Wg . WORK DONE BY THE VENTRICLE DURING SYSTOLE =
k[ vp iyp dt, WHERE k = CONSTANT
FIGURE 2
tl'xe final value of q (blood volume) at the end of the nth provided. With some ¥, at the output of M3, systolic
noes complementary momory.) Not thl relay Ko 10Tk 13 ompuled and thie o compareJo e utu
prevents this memory chain from learning the end repeatedly used to up-date ¥, until thé desired ¥ is

systolic blood volume.
obtained. The above procedure is repeated for various

values of v, until enough information is obtained to set

; ; ; o up FG1. With FG1 inthecircuit, a ventricular model
In order to determine the required functional relation is ready to be used as a part of a circulation model

ships between qg and ¥, a simpleiteration circuit is which will not be discussed here.
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CHAPTER 22
A PRACTICAL APPROACH TO ADAPTIVE CONTROL

Originally published in: CONTROL ENGINEERING, May 1966
Authors: J. W. Banham Jr. and W. L. Smith

Controllers are linear elements that are often re-
quired to operate in nonlinear systems. Thus they
cannot be expected to provide optimum performance
over a wide range of system operating conditions.
However, through a linear representation of the non-
linear system a controller can be designedwith adap-
tive features that does provide optimum compensa-
tion for transient system requirements. The follow-
ing text describes the design of a controller and its
conversion to the "adaptive' type (one whose dynamic
parameters are continuously established as a function
of transients in the system). The approach described
has been breadboarded and tested for a shipboard sys-
tem but the design techniques are applicable to other
control systems.

The maneuverability of anaval ship dependsto a large
degree upon the transient response characteristics of
the steam generating and machinery systems. Most
marine steam generators use forced draft; air for
combustion is suppliedto thefuel oil burners by vari-
able speed blowers. The forced draft blowers in the
machinery plant of a high speed combat ship are gen-
erally powered by direct drive steam turbines and
regulated by controlling the steam flow to the turbines.
The rotational inertial characteristics of these ma-
chines, over a wide range of operating speeds, contri-
bute materially to the ''sluggishness' of process re-
sponse to changes inapplied load. Designers interested
in improving the system response must optimize the
controller parameters of those system loops or sub-
loops with the longer time constants.

SYSTEM DESIGN STUDY

In a conventional automatic combustion control sys-
tem, controller settings are usually determined em-
pirically at the load condition of maximum open loop
sensitivity. Because controllers are linear elements
and the forced draft blowers are nonlinear, the situa-
tion is considerably less than optimum over a wide
range of operating loads.

a) Nonlinearities in the blower

For any type of rotating machinery, the angular ac-
celeration of the rotor assembly isproportional to the
applied differential torque and inversely proportional
to the polar moment of inertia. This linear relation-
ship may be expressed by the simple differential equa-
tion:

where
w = angular acceleration, rad/sec2
J = polar moment of inertia, lb-ft—sec2

T = driving torque developed by the prime
mover, lb-ft

Tr = load torque imposed by the blower, lb-ft

Several factors influence the applied torques. The
torque developed by a steam turbine is a function of
the turbine steam rate and its rotational speed. A
typical turbine performance graph illustrating the func-
tional relationship is shown in Figure 1. The para-
bolic curve on this map represents the design load re-
sistance for the turbine-fan unit. For this particular
set of performance data, it was foundpractical to rep-
resent the driving torque by the algebraic expression

T, = % T - m % d

a Gsmax max Gsmax J \“max
where

G /G = turbine steam flow, fraction of

s’ “smax -
rating

T = maximum locked rotor torque, lb-ft
max

m = a constant, lb-ft

w/wmax = angular velocity, fraction of rating

The steam flow to the turbine nozzles varies with the
steam supply pressure and temperature and the steam
valve flow coefficient and port area. The forced draft
blowers considered in this study were equipped with
a V-ported regulating throttle valve for which the
characteristic flow-1ift curve is as illustrated in Fig-
ure 2. The supply steam state is reasonably constant
throughout the load range. Theload torque varies di-
rectly with the blower system resistance and with the
square of the rotational speed.

2
= d
T, =8 (wmax)
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LINEAR REPRESENTATION OF THE
NONLINEAR SYSTEM

All of the elements of the combustion air flow control
loop of amarine steam generating system are charac-
terized by some nonlinearity. The following analysis
illustrates one method of representing the forced draft
blower nonlinearities by a set of linear functions.

In the basic acceleration equation

the torque terms are functions of the turbine steam
flow, Gg and the turbine-fan speed, w, as shown in
the text of this article. The accelerating torque, Ta’

was found tobe afunction of both steam flow and speed;
the graphical relationship appears in Figure 1. In this
study, the analytical relation between these variables
was established by curve-fitting to manufacturer's
performance curves, but can also be developed by a
detailed derivation of momentum equations applied to
the turbine wheel. For a fixed blower air system re-
sistance, the load torque varies with the square of the
rotational speed. The constant of proportionality, 8,
is established by this resistance.

Steam flow to the turbine is regulated by a throttling
valve characterized by the arbitrary function

Gy = F(L)

where L represents valve lift.

Sufficient information is now available to permit the
development of a set of transfer functions which de-
scribes the open loop frequency response of the tur-
bine-blower unit to small perturbations about a fixed
operating level. The general perturbation response
is given by

-1
Aw =5 /(ATa - ATr)dt

If asmall disturbance is applied at a particular steady

state initial condition (Lo, Gy wo), the nonlinear

torque terms may be reduced to linear functions ex-
pressed by the following equations:

ATa = AG_(T G

- m
s'" max S0 Ggovo)

ATr = 2/3wko

Gg is a function of valvelift as shown in Figure 2; a
tangent constructed at the point (Lo, Gso) has aslope
given by

d

aGy = 4

F(L) L = Lo AL

Substitution of these linearized functions into the ac-
celeration equation and applying a Laplace operator
yields

1[4 l
Aw = [dL F(L) L= L0 I"(Tmaszo

mGsowo) - ZBwko]

For any particular steady state operating level the

terms d/dL F(L) |L=L0, T, ax Gsor MCgoe, 2nd 28w

are constants; the above equation may thus be expressed
as a transfer function:

d
Ao g o am PO TmaxCso = ™Ss0%]
AL 1 + [J/Zﬁwo]S

This transfer function defines the response of shaft
speedtovalve lift for small perturbations given initial

conditions defined by Lo’ Gso’ and W,
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Figure 1. Forced draft blower turbine performance
curves.
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Figure 2. Turbine valve steam regulating charac-
teristics. The arbitrary function Gs = F (L) used in

Figures 3and 7is illustrated. Construction of a tan-
gent at (Gs/ Gy =0. 30, L/Lm =0.53) illustrates
max

the graphical approach tothe linear representation of
a nonlinear system. The tangent slope represents a
valve gain of 1.12 percent of steam flow per percent
oxfft valve lift at a point corresponding to 53 percent of
lift.

ax

where p is a constantfor aparticular system resist-
ance, lb~ft. In the design study, the coefficient p
was permitted to vary with the effective fan discharge
area (established by the number of burner air regis-
ters in use in the steam generator).

This informationled to the model of the system shown
in Figure 3. The problem at this point was to devise
a control law which would provide optimum compensa-
tion for the nonlinear system over a wide range of
operating speeds. For this design, the system is in-
itially described in the frequency domain as a contin-
uous series of linear systems, each similar in form
to the others but having different parameters.

b) Linear representation of the nonlinear system

One approach to the linear representation of a non-
linear system is to expand the nonlinear elements of
the system by means of the Taylor series, then dis-
regard all but the linear terms. This produces a
linear system which approximates the real system re-
sponse to small perturbations about a fixed operating
point. Because the steam admission valve character-
istic is an essentially arbitrary function, a graphical
approach was used. In this method, all of the non-
linear terms are represented as linear functions by
constructing tangents at selected operating points along
the curves which represent the functions of the alge-
braic variables. The slope of each tangent curve is
taken as the gain of the element under consideration,
Figure 2. The resulting linear model is illustrated in
Figure 4. The development of the values of the pa-
rameters associated with this model is detailedin the
box on page 22-2. ~

A linear model like the one in Figure 4 leads to a set
of transfer functions instead of a single function.
Each function in the set represents the open loop fre-
quency response of the system to a small signal si-
nusoidal disturbance superimposed on a particular
steady state initial condition. The validity of the
analytical model constructed in this fashion was con-
firmed by comparison with actual frequency response
data obtained from the operating units subjected to
pulse test analysis at two load conditions, (Ref. 1).
The family of transfer functions thus obtained was
used as the basis for a series of control system de-
signs ‘based on classical frequency response tech-
niques applicable to linear systems.

DESIGN OF THE CONTROL SYSTEM

The following conditions were used as criteria for the
dynamic performance of the closed-loop system:

a. There must be no offset error in the steady
state.

b. No overshoot in the transient response to a
"ramp'' input disturbance is to be permitted.

c. The time integral of the system absolute error
is to be minimized.

The conventional control loop employs a proportional-

plus-integral controller which receives as its feed-
back the output signal from a combustion air flow
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Conventional controllers used for regulating forced
draft blowers are simple proportional-plus-integral
devices characterized by fixed gain and reset rate
over the entire operating range. The output signal
of a linear controller of this type is given by

1
0~yeoz-7—_fedt

where e = error between input and feedback signals

vy controller proportional gain
% = controller reset rate

An adaptive feature was incorporated in such a con-
troller by servoing the proportional gain and reset
rate (integral crossover frequency) settings as re-
quired to maintain an optimum combination of closed
loop system response and stability over the designed
range of forced draft blower operation. These con-
troller parameters are shown plotted against various
loop operating levels in Figure 6. Curve fitting of
these graphical functions produced the following alge-
braic expressions:

yr = 7w
max

where vy’ = variable controller gain

¥ = optimum controller gain at w = ® hax

w/ @ ax = Steady state loop operating level
1_1 . _1 1
A T (w/ - )
o max max

DEVELOPMENT OF CONTROLLER DESIGN

1 -
where Pl variable controller reset rate, rad/sec

-}— = optimum controller reset rate
o
w =
at w/ max = ©
i = optimum controller reset rate
max t o/ -1
at w/Ymax

The output of the adaptive air flow controller may
therefore be expressed by the equation

! = 1 1_
] —V(W—)e-l-’rofedt

“max

1

o () S

It is to be noted that the controller parameters have
been expressed as functions of the control feedback
signal (in this particular system, the blower rota-
tional speed). To produce maximum loop gain during
any transient disturbance, the controller gain and
reset rate are automatically varied as a function of
either the command signal & or the feedback signal
w> Whichever of thetwo is least. An arrangement which
produces this effect is illustrated inthe computer sche-
matic, Figure 7. Using the notation indicated on this
diagram, the controller equation becomes

(’71—)e+:—/edt

P max o

+ 1 ( }, )/edt
"max \ ?/Pmax

+

o =5
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Figure 3. Forced draft blower block diagram.
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Figure 4. Block diagram of forced draft blower perturbation model at (Lo y w 0).

transmitter. For the "adaptive'' design, it was elected
to utilize the same basic controller concept but to vary
the proportional gain and integral cross-over frequency
to maintain optimum performance.

The conventional design was initiated by selecting con-
troller parameters which would give the entire control
lo0p a gain margin of six db and a phase margin of 35
deg; these margin goals were derived from previous
experience. This conventional procedure was repeated
for each of the forced draft blower transfer functions
at the various operating load levels. The result, de-
tailed inthe box onpage 22-4, was aset of empirically

optimum controller settings which could be correlated

with the loop input or output to develop analytic func-
tions that would specify the adaptive nature of the
design.

The air flow controller thus obtained was simulated
together with the forced draft blowers and air flow
system onan analog computer. The transient response
to input disturbances comparable to the effects of ship
maneuvering were then studied. Typical results are
shownin Figure 5. Notethat a small amount of over-
shoot occurred which violates one of the system de-
sign criteria. This observation led to a repetition
of the design procedure, this time using gain and phase
margins of 9 db and 45 deg, respectively. Figure 6
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Figure 5. System transient response with initial
optimization criteria.
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illustrates the relationship between the controller
parameters and the loop operating level for perform-
ance with the revised open-loop margins.

A revised analog computer program was then pre-
pared; a simplified version of the basic program is
shown in Figure 7. Transient response of this simu-
lated system appears in the chart recordings of Fig-
ure 8A; the corresponding response of the simulated
adaptive control system appears for comparative pur-
poses in Figure 8B. It is evident from these record-
ings that the adaptive system is considerably superior
to the conventional system. Inspection of the error
recordings discloses a reduction of five to one in the
time integral of absolute error. At the same time
there is neither overshoot nor permanent offset. Thus
the design criteria have been met.

FROM SIMULATION OF ACTUAL TESTS

Results obtained from the analog computer studies
supported a decision to breadboard a pneumatic con-
trol system from standard hardware. Thebasic com-
ponents used in the adaptive controller were pneu-
matic proportional and integral amplifiers with servo-
driven gain settings. Two of these units provided the
necessary proportional-plus-reset control mode. The
gains of these two devices were automatically varied
as a function of either the input to the closedair flow
control loop or its output, whichever produced the
greatest loop gain during any transient disturbance.
In the steady state, these variables are equal and
produce the same gain in the open loop.

Tests of the loop were conducted by imposing ''ramp"
inputs which corresponded to those used in the com-
puter simulation, thus aiding in an evaluation of con-
trol system performance. The recorded results of
one of these transients are shown in Figure 8C. The
transient performance of the closed loop system
closely paralleled that of the simulated system, see
Figure 8B.

The air flow control loop comprises one of the open-
loop elements of the steam generator's automatic
combustion contrel system. The principal benefit of
the adaptive air flow contro]l system when used as a
part of the overall steam generator control system
is its ability to reduce the deviation of controlled
steam pressure and to eliminate the possibility of
incomplete combustion (and accompanying smoke)
during maneuvering. Althoughhardware requirements
for systems of this type are presently more com-
plex, and less reliable than for conventional systems,
adaptive design techniques become attractive when
applied to systems constructed from encapsulated or
modular design control circuitry. The U. S. Navy is
currently investigating adaptive systems of the solid
state pneumatic (pure fluid) and solid state electronic
types for use in the control of shipboard main pro-
pulsion and auxiliary machinery.
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APPENDIX |

Glossary of Abbreviations

C Capacitor

(o Compute

C Clock

CK Check

D or DN Down

DCU Decimal Counting Unit
DFG Diode Function Generator
DVM Digital Volt Meter

ES Electronic Switch

Fb Feedback

FF Flip-flop

F-RT Forward-Reset Real Time
FR Function (Operational) Relay
FS Function Switch

H Hold

| or IC Initial Condition

1J Initial Junction

IN Input

INV  Inverter

NC

NO

o)

Iterative Operation
Junction

Relay

Logical Variable
Meter

Normally Closed
Normally Open

Output

P or POT Coef. Potentiometer

R

R

R-H

RO

RTS

sJ

TL

Reset

Resistor
Reverse-Hold
Repetitive Operation
Reset-Toggle-Set
Set

Summing Junction
Toggle

Trunk Line

Up







APPENDIX I

The symbology used throughout this handbook is in conformity with the objectives

of Simulation Councils, Inc., namely, to encourage the use of uniform analog com-

puter graphics. This article was prepared by SCI, and appeared in the March 1966

issue of SIMULATION.

Permission has been granted to reprint this article.

Presenting...

Uniform graphics for SIMULATION

The symbols and the methods of laying out analog
and hybrid computer diagrams presented here are
advocated to alleviate the confusion caused by the
uncoordinated invention of new symbols and dia-
gramming practices. The increasing use of hybrid
techniques and equipment has aggravated an already
bad situation to the point that it is often no longer
possible for one worker in our field to read another’s
diagram. Usually this is because symbols are devised
and diagrams are drawn to include details peculiar
to a particular kind of equipment. Such a wiring, or
“patching,” diagram is of course necessary for set-
ting up and checking out an actual simulation, but
hardware-peculiar details are only confusing to those
with other kinds of equipment. With few exceptions,
the use of a simplified signal-flow diagram to illus-
trate technical articles is much more effective.
With the foregoing in mind an SCi committee

composed of

GEORGE BURGIN

JOE HUSSEY

HANS JORGENSEN

GRANINO KORN

JOHN McLEOD

selected the symbols and offers the following sugges-
tions for their use. Primary considerations were cur-
rent usage, clarity, and simplicity. We devised no new
symbols and, unless there were overriding indica-
tions to the contrary, we adopted those already in
widest use. Clarity and simplicity, we believe, will be
enhanced by the choice of unique shapes to repre-
sent different components, and the elimination of all
unnecessary details in diagrams.

There was no intent on the part of our committee
to set up standards for the industry. However, all
diagrams appearing in SIMULATION will be pre-
pared according to the committee’s recommenda-
tions (as they may be modified from time to time),
and we hope that these recommendations will prove
attractive to others. Suggestions for modifications
and additions are solicited.

General rules

The following methods and symbols are recom-
mended for the illustration of technical articles pre-
pared for publication. Unless the purpose of the
article is to describe the use of a particular kind of
equipment, and the hardware details are pertinent
to the subject, such illustrations should not be “’hard-
ware-peculiar.” In other words, the objective should
be to show signal flow, rather than “patching”
details.

The primary, or overall, system diagram should
show only the essential signal flow. Where it is neces-
sary to show details, separate diagrams should be
made and referenced to the primary diagram by en-
closing the detailed area of the primary diagram in
dotted lines with suitable notation.

The direction of signal flow should be indicated
by arrowheads except where the shape of the sym-
bols makes the direction of flow obvious. Primary
signal flow (with the exception of feedback loops)
should be from left to right, and, if practical, each
“line” of symbols should be made to read like the
mathematical relation it represents.

The choice of whether to end a line and label it
(preferably with the symbol of the variable that the
signal represents) when it reaches the right-hand
side of the diagram, and then indicate its continua-
tion with the same label as it enters again at the
left-hand side, instead of drawing in the connection,
should be made on the basis of clarity; if a line re-
turning the signal from right to left will cross many
other lines and be hard to follow, it should not be
drawn in.

If a diagram involves a number of identical cir-
cuits, only one should be shown in detail, while the
others should be indicated by boxes with appropriate
notation.

Components should not be numbered ynless they
are referred to by number in the text.

All amplifier gains should be shown just outside
the amplifier at the point where the input enters.
Unity gains should not be labeled.

Always apply the test of clarity and simplicity. Ask
yourself: “Is this the most understandable way to
diagram this for those unfamiliar with the hardware,
and less familiar with the subject, than 12"
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